Methanogenic granular sludge and wastewater fermented sludge were used as inocula for batch tests of anaerobic bioremediation of chlorinated pesticide contaminated soil. Results obtained for both types of biomass were similar: 80 to over 90% of gamma -hexachlorocyclohexane (gamma-HCH), 1,1,1-trichloro-2,2-bis-(4-methoxyphenyl)ethane (methoxychlor) and 1,1,1-trichloro-2,2-bis-(4-chlorophenyl)ethane (DDT) removed in 4-6 weeks. Residual fractions of these pesticides persisted till the end of the 16-week experiment. DDT was degraded through 1,1-dichloro-2,2-bis-(4-chlorophenyl)ethane (DDD). Accumulation of this product corresponded stoichiometrically only to 34-53% of removed DDT, supposedly due to its further transformations, finally resulting in formation of detected 4,4'-dichlorobenzophenone (DBP). Addition of 0.5 mM Tween 80 nonionic surfactant resulted in about a twofold decrease of gamma -HCH and methoxychlor residual concentrations, as well as considerably lower DDD accumulation (7-29%) and higher DBP production. However, 1.25 mM dose of this surfactant applied together with granular sludge brought DDD levels back to that observed for treatments with the sludge alone, also impairing DBP formation.
Anaerobic biodegradation of DDT in field-polluted soil was investigated in relation to Tween 80 surfactant dose and initial pollution level. Experiments were carried out as lab-scale tests with flooded soil, inoculated with granular sludge. Higher surfactant doses decreased DDT residual concentration and also reduced DDD metabolite accumulation. However, doses higher than optimum caused DDD production to increase again. Results were also better for lower initial contamination levels-DDD accumulation was smaller whereas formation of terminal metabolite DBP was higher, indicating an enhancement of DDT transformation. Tests with pure compounds spiked in clean soil demonstrated that DDD is degraded slowly. Results point to three possible parallel pathways of anaerobic DDT transformation, not, as commonly reported, only one starting with dechlorination to DDD.
Bioremediation is intensively studied today as a treatment method for soil contaminated with chlorinated pesticides, chemicals counted among persistent organic pollutants. In the presented work, results of desorption kinetics study using consecutive Tenax TA solid phase extraction (SPE) were tested as predictors of 3‐wk anaerobic soil bioremediation effectiveness for chlorinated pesticides γ‐HCH, DDT, and methoxychlor. Field‐contaminated samples were used in these experiments, and conditions of bioremediation tests were based on previous research. Amounts of pesticides removed during bioremediation (43–98% of initial concentrations) were in most cases much larger (average ratio 1.37) than rapidly desorbing fractions estimated in SPE using two‐compartment model of desorption kinetics. The scatter of results was also considerable (standard deviation 0.45). However, there was a statistically significant correlation between amounts removed and rapidly desorbing fractions (R2 = 0.64), indicating a relationship between degradability and desorbability. Nonetheless, determination of rapidly desorbing fractions was considered rather a poor indicator of soil bioremediation efficiency for chlorinated pesticides. The total amounts of pesticides desorbed by Tenax in 72 h performed better in this respect (R2 = 0.73, fraction removed/desorbed = 1.10 ± 0.20, average ± standard deviation). Disappearance of DDT during bioremediation was accompanied by DDD formation but this was considerably lower than results expected from stoichiometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.