The paper presents the study of a three-phase system coupling a DC power source to a power grid. This study, based on an FPGA, implements a real-time control system and digital models of the power circuit. The proposed proportional–resonant (P+R) controller with a modified structure was part of the system, which can be used as an alternative controller to traditional ones, e.g., in photovoltaic systems. Due to difficulties in implementing resonant controllers, a P+R with a new structure using a PI controller was elaborated. With an appropriate approach to the generation of phase current patterns, it is possible to set the reactive current and, thus, compensate for the reactive power. The operation of the system for typical operating conditions (e.g., system startup, change in preset load) was characterized and compared with a classical solution using a PI controller.
Solar power plant system represents the clean energy generation systems which convert and deliver the large amounts of solar radiation energy to the grid. The main purpose of the study is to maximize the amount of energy delivered to the grid from the solar photovoltaic cells. The solar irradiance and the grid voltage are the complex and dynamic system and need the universal solution which can provide more power at high dynamics of changes in external, various conditions. This work focuses on investigations provided in detail for the fuzzy logic-based synchronization technique which significantly increases the energy efficiency of the photovoltaic system. The multi-photovoltaic system's controller concept was elaborated and evaluated using the programmable logic device, particularly useful for power critical drives. The dynamic responses of photovoltaic system were measured, which refers to the start procedure, solar irradiance, grid frequency and phase angle change. The results of the photovoltaic system investigation are made to appoint the efficiency in relation to the standard solution. The proposed fuzzy logic-based synchronization method delivers more energy to the grid in dynamic states in relation to the standard phase-locked loop method. The normal operation of the photovoltaic system is the dynamic operation. Therefore, the solution described in work allows to increase the efficiency of solar farms.
This paper presents a novel maximum power point tracking method for photovoltaic inverters with a single phase connection to the onboard 400Hz vehicle or aircraft grid, supplying drives operating in a critical mode. By taking into account that the power fluctuations cause voltage ripples at the termini of photovoltaic panels connected to the DC-link capacitor, this paper proposes a conductance base maximum power point tracking method. The impact of varying voltage has been reduced to ensure the constant reference current for the grid current calculation problem, which has been reported in previous studies. Accordingly, a conductance base tracking method, grid current control, is proposed and implemented to ensure the expected output current with respect to varying power. As described in this paper, the exemplified solar converter prototype can implement constant reference photovoltaic current control with a maximum power point achievement under continuous voltage rippling. Experimental results are given to verify the feasibility of the proposed MPPT method, which significantly improves the power efficiency for solar powered vehicles or aircraft.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.