The study of dissipative equations is an area that has attracted substantial attention over many years. Much progress has been achieved using a combination of both finite dimensional and infinite dimensional techniques, and in this book the authors exploit these same ideas to investigate the asymptotic behaviour of dynamical systems corresponding to parabolic equations. In particular the theory of global attractors is presented in detail. Extensive auxiliary material and rich references make this self-contained book suitable as an introduction for graduate students, and experts from other areas, who wish to enter this field.
We analyze the linear theory of parabolic equations in uniform spaces. We obtain sharp Lp-Lq-type estimates in uniform spaces for heat and Schrödinger semigroups and analyze the regularizing effect and the exponential type of these semigroups. We also deal with general second-order elliptic operators and study the generation of analytic semigoups in uniform spaces.
The aim of the article is to present a unified approach to the existence, uniqueness and regularity of solutions to problems belonging to a class of second order in time semilinear partial differential equations in Banach spaces. Our results are applied next to a number of examples appearing in literature, which fall into the class of strongly damped semilinear wave equations. The present work essentially extends the results on the existence and regularity of solutions to such problems. Previously, these problems have been considered mostly within the Hilbert space setting and with the main part operators being selfadjoint. In this article we present a more general approach, involving sectorial operators in reflexive Banach spaces.
In this paper we prove that diffusively coupled abstract semilinear parabolic systems synchronize. We apply the abstract results obtained to a class of ordinary differential equations and to reaction diffusion problems. The technique consists of proving that the attractors for the coupled differential equations are upper semicontinuous with respect to the attractor of a limiting problem, explicitly exhibited, in the diagonal. ᮊ
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.