Polypropylene (PP) compatibly sized glass fibres (GFs) were treated with boiling water and toluene, respectively, to reveal the interactions of water and toluene with different components in the sizing of sized GF and their influences on the interfacial adhesion strength of GF/PP model composites.Compared to control GF/PP model composites, about 30% increase of interfacial adhesion strength was achieved for composites with water-treated GF, whereas a small decrease of interfacial adhesion strength was revealed for composites with toluene-treated GF. X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Zeta-potential measurement, and water contact angle measurement demonstrated that the boiling water treated GFs posses a more polar and hydrophilic surface with homogeneously distributed derivatives of γ-aminopropyltriethoxysilane, which is related to a higher interfacial adhesion strength for water treated GF/PP model composites.In contrast, hot toluene treated GFs led to a more hydrophobic surface with low molar mass PP and surfactants enriching on the outermost surface.
Horizontal road markings are one of the essential safety features of modern roadways. All of the utilised systems consist of a pigmented coating containing partially embedded retroreflective elements such as glass beads. In addition to durability and functionality of the road marking, ease of application and effect on human health and environment are primary considerations for their selection. Road marking systems can be divided into plural component materials that cure due to chemical reaction occurring at the site of application, thermoplastics that require heat for application, and paints, drying upon evaporation of the dissolving medium. The focus of this paper is on road marking paints with a special emphasis on contemporary waterborne materials. Over 100 years old solventborne technology furnishes paints that afford consistent application properties under a variety of conditions such as lower temperatures and high humidity. Their environmental and human health impact is significant and durability quite poor. Modern waterborne paints are based on acrylic resins and incorporate developed in the 1990s quick-set chemical mechanism for drying. Under favourable weather conditions, they dry faster as compared to solventborne. However, their known weakness is risk of washout in case of rain and sluggish development of washout resistance at marginal application conditions like high humidity and low temperature. Impact of waterborne paints on human health and environment is very significantly minimised as compared to other materials. Their durability is significantly higher as compared to solventbased paints. Analysis of characteristics of waterborne road marking paints and preliminary results from their trial application in Croatia are presented herein. Based on the presented comparison with solventborne materials, after results from test application become available, intelligent decisions regarding future use of waterborne road marking paints in Croatia and other countries that have not embraced this technology shall be possible.
Abstract. The influence of sizing constituent distribution on the properties of sized glass fibres (GFs) and corresponding polypropylene (PP) composites was studied by two-stage sizing application, i.e. applying silane coupling agent and polymeric film former at separate stages and with different sequences, in comparison with one-stage sizing application usually used. Surface properties of sized GFs and transverse tensile strength of unidirectional GF reinforced composites were studied using various surface and interface analysis methods and tensile testing, respectively. Two-stage technology achieved sized GFs with lower loss-on-ignition (LOI) and resulted in poor fibre-matrix adhesion strength. However, applying silane coupling agent at the first sizing stage with an increased roller speed achieved sized GFs with lower LOI but composites with mechanical properties quite close to those of composites based on one-stage technology. Moreover, the difference in surface properties of sized GFs is discussed in terms of the wetting ability difference of sizing constituents and the interactions between sizing components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.