A significant knowledge gap exists concerning the geographical distribution of nontuberculous mycobacteria (NTM) isolation worldwide.To provide a snapshot of NTM species distribution, global partners in the NTM-Network European Trials Group (NET) framework (www.ntm-net.org), a branch of the Tuberculosis Network European Trials Group (TB-NET), provided identification results of the total number of patients in 2008 in whom NTM were isolated from pulmonary samples. From these data, we visualised the relative distribution of the different NTM found per continent and per country.We received species identification data for 20 182 patients, from 62 laboratories in 30 countries across six continents. 91 different NTM species were isolated. Mycobacterium avium complex (MAC) bacteria predominated in most countries, followed by M. gordonae and M. xenopi. Important differences in geographical distribution of MAC species as well as M. xenopi, M. kansasii and rapid-growing mycobacteria were observed.This snapshot demonstrates that the species distribution among NTM isolates from pulmonary specimens in the year 2008 differed by continent and differed by country within these continents. These differences in species distribution may partly determine the frequency and manifestations of pulmonary NTM disease in each geographical location. @ERSpublications Species distribution among nontuberculous mycobacteria isolates from pulmonary specimens is geographically diverse
SUMMARYMolecular typing has revolutionized epidemiological studies of infectious diseases, including those of a mycobacterial etiology. With the advent of fingerprinting techniques, many traditional concepts regarding transmission, infectivity, or pathogenicity of mycobacterial bacilli have been revisited, and their conventional interpretations have been challenged. Since the mid-1990s, when the first typing methods were introduced, a plethora of other modalities have been proposed. So-called molecular epidemiology has become an essential subdiscipline of modern mycobacteriology. It serves as a resource for understanding the key issues in the epidemiology of tuberculosis and other mycobacterial diseases. Among these issues are disclosing sources of infection, quantifying recent transmission, identifying transmission links, discerning reinfection from relapse, tracking the geographic distribution and clonal expansion of specific strains, and exploring the genetic mechanisms underlying specific phenotypic traits, including virulence, organ tropism, transmissibility, or drug resistance. Since genotyping continues to unravel the biology of mycobacteria, it offers enormous promise in the fight against and prevention of the diseases caused by these pathogens. In this review, molecular typing methods forMycobacterium tuberculosisand nontuberculous mycobacteria elaborated over the last 2 decades are summarized. The relevance of these methods to the epidemiological investigation, diagnosis, evolution, and control of mycobacterial diseases is discussed.
In the epidemiology of tuberculosis (TB) and nontuberculous mycobacterial (NTM) diseases, as in all infectious diseases, the key issue is to define the source of infection and to disclose its routes of transmission and dissemination in the environment. For this to be accomplished, the ability of discerning and tracking individual Mycobacterium strains is of critical importance. Molecular typing methods have greatly improved our understanding of the biology of mycobacteria and provide powerful tools to combat the diseases caused by these pathogens. The utility of various typing methods depends on the Mycobacterium species under investigation as well as on the research question. For tuberculosis, different methods have different roles in phylogenetic analyses and person-to-person transmission studies. In NTM diseases, most investigations involve the search for environmental sources or phylogenetic relationships. Here, too, the type of setting determines which methodology is most suitable. Within this review, we summarize currently available molecular methods for strain typing of M. tuberculosis and some NTM species, most commonly associated with human disease. For the various methods, technical practicalities as well as discriminatory power and accomplishments are reviewed.
BackgroundThe Malassezia yeasts which belong to the physiological microflora of human skin have also been implicated in several dermatological disorders, including pityriasis versicolor (PV), atopic dermatitis (AD), and psoriasis (PS). The Malassezia genus has repeatedly been revised and it now accommodates 14 species, all but one being lipid-dependent species. The traditional, phenotype-based identification schemes of Malassezia species are fraught with interpretative ambiguities and inconsistencies, and are thus increasingly being supplemented or replaced by DNA typing methods. The aim of this study was to explore the species composition of Malassezia microflora on the skin of healthy volunteers and patients with AD and PS.MethodsSpecies characterization was performed by conventional, culture-based methods and subsequently molecular techniques: PCR-RFLP and sequencing of the internal transcribed spacer (ITS) 1/2 regions and the D1/D2 domains of the 26S rRNA gene. The Chi-square test and Fisher’s exact test were used for statistical analysis.ResultsMalassezia sympodialis was the predominant species, having been cultured from 29 (82.9%) skin samples collected from 17 out of 18 subjects under the study. Whereas AD patients yielded exclusively M. sympodialis isolates, M. furfur isolates were observed only in PS patients. The isolation of M. sympodialis was statistically more frequent among AD patients and healthy volunteers than among PS patients (P < 0.03). Whether this mirrors any predilection of particular Malassezia species for certain clinical conditions needs to be further evaluated. The overall concordance between phenotypic and molecular methods was quite high (65%), with the discordant results being rather due to the presence of multiple species in a single culture (co-colonization) than true misidentification. All Malassezia isolates were susceptible to cyclopiroxolamine and azole drugs, with M. furfur isolates being somewhat more drug tolerant than other Malassezia species.ConclusionsThis study provides an important insight into the species composition of Malassezia microbiota in human skin. The predominance of M. sympodialis in both normal and pathologic skin, contrasts with other European countries, reporting M. globosa and M. restricta as the most frequently isolated Malassezia species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.