The SARS-CoV-2-related disease has an undoubted impact on the healthcare system. In the treatment of severe COVID-19 cases, the main focus is on respiratory failure. However, available data suggest an important contribution of haemodynamic impairment in the course of this disease. SARS-CoV-2 may affect the circulatory system in various ways that are universal for septic conditions. Nonetheless, unique features of this pathogen, e.g. direct insult leading to myocarditis and renin-angiotensin-aldosterone axis dysregulation, must be taken into account. Although current recommendations on COVID-19 resemble previous septic shock guidelines, special attention to haemodynamic monitoring and treatment is necessary. Regarding treatment, one must take into account the potential profound hypovolaemia of severe COVID-19 patients. Pharmacological cardiovascular support should follow existing guidelines and practice. Interesting concepts of decatecholaminisation and the effect of vasopressors on pulmonary circulation are also presented in this review on COVID-19-related haemodynamic failure.
Various opioids are added to local anesthetic solutions for spinal anesthesia. This may change the final density of the local anestetic (LA) mixture. This effect regarding current concepts in spinal anesthesia needs to be re-evaluated. In order to re-evaluate such effects, hyperbaric and isobaric local anesthetic (LA) solutions were mixed with opioid adjuvants (A) using the equipment available in the operating room. Ten density measurements for each composition (LA-A) were performed. The density change of 0.0006 g/mL was regarded as significant. Measured densities were also compared with theoretical values calculated using Hare’s. As a result, the addition of an opioid adjuvant caused a significant reduction in the final density of the LA-A solution. In hyperbaric LA mixtures, it did not change the baricity from hyperbaric to isobaric. However, the addition of highly hypobaric fentanyl 0.99360 g/mL (SD ± 0.00004) changes all isobaric LA solutions baricity to hypobaric. The comparison of measured and theoretical densities revealed significant differences (p > 0.05). However, the absolute reduction reached 0.0006 g/mL in only two LA-A compositions. We conclude that the addition of fentanyl to isobaric LA results in a hypobaric solution that may affect the distribution of the block. The inadequacy of LA-A in a clinical setting is unlikely to influence block characteristics.
Dexmedetomidine, a central α-2 agonist, is used for procedural sedation and for conscious sedation influences on heart rate and blood pressure. Authors verified whether it is possible to predict bradycardia and hypotension with the use of heart rate variability (HRV) analysis for an autonomic nervous system (ANS) activity assessment. The study included adult patients of both sexes with an ASA score of I or II scheduled for ophthalmic surgery to be performed under sedation. The loading dose of dexmedetomidine was followed by a 15 min infusion of the maintenance dose. The frequency domain heart rate variability parameters from the 5-min Holter electrocardiogram recordings before dexmedetomidine administration were used for the analysis. The statistical analysis also included pre-drug heart rate and blood pressure as well as patient age and sex. The data from 62 patients were analysed. There was no relationship between the decrease in heart rate (42% of cases) and initial HRV parameters, haemodynamic parameters or sex and age of patients. In multivariate analysis, the only risk factor for a decrease in mean arterial pressure (MAP) > 15% from the pre-drug value (39% of cases) was the systolic blood pressure before dexmedetomidine administration as well as for a >15% decrease in MAP sustained at more than one consecutive time point (27% of cases). The initial condition of the ANS did not correlate with the incidence of bradycardia or hypotension; HRV analysis was not helpful in predicting the abovementioned side effects of dexmedetomidine.
Background: Salbutamol is a short acting beta-2 mimetic commonly used among intensive care unit patients. There are data suggesting that his mechanism of action can be a potential factor triggering arrhythmias. The aim of this study was to assess whether nebulized salbutamol causes systemic effects resulting in electrocardiographic alterations associated with atrial fibrillation occurrence in mechanically ventilated patients. Methods: 50 individuals were randomly allocated to receive either 2.5 or 5 mg of nebulized salbutamol for 20 minutes. 60 minutes prior to the start of nebulization, 12 lead surface electrocardiogram has been recorded. Electrocardiographic parameters associated with atrial activity-P wave and PR interval, and their derivates: P wave dispersion and PR interval dispersion were analysed. Results: Both doses of inhaled salbutamol caused changes of P wave indices-maximal, minimal and mean P wave duration, from simultaneously recorded leads, and concomitant decrease of P wave dispersion. Prolongation of P wave affected predominantly minimal P wave duration (11.93 ms [95% CI: 8.69-15.17]) comparing with maximal P wave duration (2.61 [95% CI: 021-5.43]). Atrio-ventricular conduction-PR interval was also prolonged, however minimal PR interval duration from simultaneously recorded leads was shortened in group receiving 5 mg of salbutamol. Conclusions: Nebulized salbutamol in ICU patient possess systemic effects which causes changes in P wave indices in surface ECG recordings. This electrophysiological influence may be associated with the increased risk of atrial fibrillation among this group of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.