For the past several decades, research in understanding the molecular basis of human aging has progressed significantly with the analysis of premature aging syndromes. Progerin, an altered form of lamin A, has been identified as the cause of premature aging in Hutchinson-Gilford Progeria Syndrome (HGPS), and may be a contributing causative factor in normal aging. However, the question of whether HGPS actually recapitulates the normal aging process at the cellular and organismal level, or simply mimics the aging phenotype is widely debated. In the present study we analyzed publicly available microarray datasets for fibroblasts undergoing cellular aging in culture, as well as fibroblasts derived from young, middle-age, and old-age individuals, and patients with HGPS. Using GeroScope pathway analysis and drug discovery platform we analyzed the activation states of 65 major cellular signaling pathways. Our analysis reveals that signaling pathway activation states in cells derived from chronologically young patients with HGPS strongly resemble cells taken from normal middle-aged and old individuals. This clearly indicates that HGPS may truly represent accelerated aging, rather than being just a simulacrum. Our data also points to potential pathways that could be targeted to develop drugs and drug combinations for both HGPS and normal aging.
Mathematical methods of information theory appear to provide a useful language to describe how stimuli are encoded in activities of signaling effectors. Exploring the information-theoretic perspective, however, remains conceptually, experimentally and computationally challenging. Specifically, existing computational tools enable efficient analysis of relatively simple systems, usually with one input and output only. Moreover, their robust and readily applicable implementations are missing. Here, we propose a novel algorithm, SLEMI—statistical learning based estimation of mutual information, to analyze signaling systems with high-dimensional outputs and a large number of input values. Our approach is efficient in terms of computational time as well as sample size needed for accurate estimation. Analysis of the NF- κ B single—cell signaling responses to TNF- α reveals that NF- κ B signaling dynamics improves discrimination of high concentrations of TNF- α with a relatively modest impact on discrimination of low concentrations. Provided R-package allows the approach to be used by computational biologists with only elementary knowledge of information theory.
Many components of signaling pathways are functionally pleiotropic, and signaling responses are marked with substantial cell-to-cell heterogeneity. Therefore, biochemical descriptions of signaling require quantitative support to explain how complex stimuli (inputs) are encoded in distinct activities of pathways effectors (outputs). A unique perspective of information theory cannot be fully utilized due to lack of modeling tools that account for the complexity of biochemical signaling, specifically for multiple inputs and outputs. Here, we develop a modeling framework of information theory that allows for efficient analysis of models with multiple inputs and outputs; accounts for temporal dynamics of signaling; enables analysis of how signals flow through shared network components; and is not restricted by limited variability of responses. The framework allows us to explain how identity and quantity of type I and type III interferon variants could be recognized by cells despite activating the same signaling effectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.