The accepted methods for testing concrete are not favorable for determining its heterogeneity. The interpretation of the compressive strength result as a product of destructive force and cross-section area is burdened with significant understatements. It is assumed erroneously that this is the lowest value of strength at the height of the tested sample. The top layer of concrete floors often crumble, and the strength tested using sclerometric methods does not confirm the concrete class determined using control samples. That is why it is important to test the distribution of compressive strength in a cross-section of concrete industrial floors with special attention to surface top layers. In this study, we present strength tests of borehole material taken from industrial floors using the ultrasonic method with exponential spot heads with a contact surface area of 0.8 mm2 and a frequency of 40 kHz. The presented research project anticipated the determination of strength for samples in various cross-sections at the height of elements and destructive strength in the strength testing machine. It was confirmed that for standard and big borehole samples, it is not possible to test the strength of concrete in the top layer of the floor by destructive methods. This can be done using the ultrasonic method. After the analysis, certain types of distributions of strength across concrete floor thickness were chosen from the completed research program. The gradient and anti-gradient of strength were proposed as the new parameters for the evaluation of floor concrete quality.
Sulphate corrosion of concrete is a complex chemical and physical process that leads to the destruction of construction elements. Degradation of concrete results from the transportation of sulphate compounds through the pores of exposed elements and their chemical reactions with cementitious material. Sulphate corrosion can develop in all kind of structures exposed to the corrosive environment. The mechanism of the chemical reactions of sulphate ions with concrete compounds is well known and described. Furthermore, the dependence of the compressive strength of standard cubic samples on the duration of their exposure in the sulphate corrosion environment has been described. However, strength tests on standard samples presented in the scientific literature do not provide an answer to the question regarding the measurement methodology and actual distribution of compressive strength in cross-section of reinforced concrete structures exposed to sulphate ions. Since it is difficult to find any description of this type of test in the literature, the authors undertook to conduct them. The ultrasonic method using exponential heads with spot surface of contact with the material was chosen for the measurements of concrete strength in close cross-sections parallel to the corroded surface. The test was performed on samples taken from compartments of a reinforced concrete tank after five years of operation in a corrosive environment. Test measurements showed heterogeneity of strength across the entire thickness of the tested elements. It was determined that the strength of the elements in internal cross-sections of the structure was up to 80% higher than the initial strength. A drop in the mechanical properties of concrete was observed only in the close zone near the exposed surface.
Building diagnostics before renovation is an important stage in the process of designing and making future repairs and modernization of buildings. Performed hastily, without careful analysis, it may be the cause of wrong decisions about the method of repair. The experience of the person performing the tests usually has an impact on the identification of existing hazards. The article presents an example of the effects of cursory execution of diagnostics on a multi-family residential building. The building was inspected, as it turned out later not precisely, and the causes of damage were wrongly identified. As a result of a cursory diagnosis, works were designed and carried out, which instead of eliminating structural defects have increased them. The causes of errors have been found at the stage of identifying failure, recommendations and repair of a cavity curtain wall. In the summary it was emphasized, that expert experience gained on many examples of differently damaged buildings, under the supervision of a person with experience is necessary for theoretical knowledge to be verified, and the reports were prepared without any faults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.