This study deals with the numerical analysis of the plasma jet behavior close to the substrate surface depending on its topography. It uses a 2D axisymmetric time-dependent CFD model solved with the Ansys Fluent 2020/R1 package. The model takes into consideration the nonlinear thermophysical properties and turbulent phenomena of the plasma jet as well as its interaction with the microtextured substrate. Representative substrate topographies were considered as a boundary condition in the numerical simulations. They correspond to the bond coats used in Thermal Barrier Coating technology, actually APS sprayed NiCrAlY coatings which were experimentally microtextured using various laser unit operational conditions resulting in different substrate topographies. The numerical calculations showed that the substrate topography, modified and controlled in this work by microtexturing, disturbs the homogeneity of the pressure field in the substrate boundary layer resulting in the periodical pressure fluctuation. It was also observed that the relative local pressure disturbance is more significant in the substrate outer regions than close to the centerline. Then, based on the results of numerical calculations, the potential movement of feedstock particles near to the substrate was discussed. It was concluded that the deposition of fine powders, characterized by a low Stokes number, will be influenced by the pressure field distribution near to the substrate and will take place mainly in the local high-pressure zones. Furthermore, the local swirl of plasma taking place in each fine microtexture, created here by laser ablation, privileges the deposition of such particles on the surface asperities. These observations show that the CFD code modeling opens the possibility of predicting the movement and deposition of particles during plasma spraying, which is essential for understanding coating deposition mechanisms in suspension plasma spray.
The aim of this work is to better understand the build-up of thermal barrier coatings (TBC) on microtextured substrates, particularly the influence of geometry on the behavior of plasma jets in substrate boundary layers. Coatings produced by suspension plasma spraying served as an experimental reference for numerical analysis, which involved advanced turbulent flow and volumetric heat source modeling along with the use of commercial fluid flow software. Geometric and numerical models were used to simulate the generation of plasma inside the torch and the resulting plasma flow with its highly nonlinear thermophysical characteristics. This work opens the possibility of predicting feedstock particle movement and deposition, which is essential in understanding coating build-up mechanisms in general and the flow of fine particles on substrate surfaces in particular.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.