We investigated by electron spectroscopy the strong-field multiphoton ionization of O 2 molecules with ultrashort laser pulses in the intensity range between the multiphoton and tunneling regimes. The ionization proceeds by at least three different mechanisms, in addition to the eight-and nine-photon nonresonant pathways. Transient multiphoton resonances with vibrational Rydberg levels give rise to direct Freeman-type peaks with sublaser linewidth and spin-orbit splitting. Some resonance levels actually become populated and yield extremely narrow lines because of postpulse vibrational autoionization. When the lowest photon order resonance channel for the Rydberg states is closed, a third contribution becomes dominant with a main peak at 0.4 eV that shares its main properties with the recently discovered universal low-energy structure in the electron spectra of atoms and molecules [C. I. Blaga et al., Nat. Phys. 5, 335 (2009); W. Quan et al., Phys. Rev. Lett. 103, 093001 (2009)]. The variation of the Freeman resonance spectrum with the laser peak intensity is well correlated with the vibronic Franck-Condon factors for the overlap of the intermediate Rydberg state with the O 2 ground state. Accordingly, the Freeman peaks could be unambiguously assigned to individual vibronic multiphoton resonances, and the disappearance of the Freeman resonances at a certain laser intensity could be explained. The population of the autoionizing Rydberg states could be assigned similarly to such vibronic resonances.
Conventional photoelectron and time-of-flight photoelectron-photoelectron coincidence (TOF-PEPECO) spectra have been measured for the outer valence region of the 1,4-bromofluorobenzene molecule. The photoelectron spectra were recorded using HeI alpha radiation from a resonance source, and the TOF-PEPECO spectra were recorded using HeII alpha radiation from a pulsed resonance source. The former provide energies of the cationic states and the latter of the dicationic states. The spectra are adequately interpreted with the aid of accurate Green's function calculations, showing very significant correlation effects. The lowest double ionization energy is found at 23.45 eV associated with the (4b(1))(-2)X (1)A(1) dicationic state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.