The disease classification neurodegeneration with brain iron accumulation (NBIA) comprises a clinically and genetically heterogeneous group of progressive neurodegenerative disorders characterized by brain iron deposits in the basal ganglia. For about half of the cases, the molecular basis is currently unknown. We used homozygosity mapping followed by candidate gene sequencing to identify a homozygous 11 bp deletion in the orphan gene C19orf12. Mutation screening of 23 ideopathic NBIA index cases revealed two mutated alleles in 18 of them, and one loss-of-function mutation is the most prevalent. We also identified compound heterozygous missense mutations in a case initially diagnosed with Parkinson disease at age 49. Psychiatric signs, optic atrophy, and motor axonal neuropathy were common findings. Compared to the most prevalent NBIA subtype, pantothenate kinase associated neurodegeneration (PKAN), individuals with two C19orf12 mutations were older at age of onset and the disease progressed more slowly. A polyclonal antibody against the predicted membrane spanning protein showed a mitochondrial localization. A histopathological examination in a single autopsy case detected Lewy bodies, tangles, spheroids, and tau pathology. The mitochondrial localization together with the immunohistopathological findings suggests a pathomechanistic overlap with common forms of neurodegenerative disorders.
Deletion screening of PANK2 should be part of the diagnostic spectrum. Factors other than enzymatic residual activity are determining the course of disease. There are strong arguments in favor of locus heterogeneity.
Progressive myoclonus epilepsy type 1 (EPM1, also known as Unverricht-Lundborg disease) is an autosomal recessive disorder characterized by progressively worsening myoclonic jerks, frequent generalized tonic-clonic seizures, and a slowly progressive decline in cognition. Recently, two mutations in the cystatin B gene (also known as stefin B, STFB) mapping to 21q22.3 have been implicated in the EPM1 phenotype: a G-->C substitution in the last nucleotide of intron 1 that was predicted to cause a splicing defect in one family, and a C-->T substitution that would change an Arg codon (CGA) to a stop codon (TGA) at amino acid position 68, resulting in a truncated cystatin B protein in two other families. A fourth family showed undetectable amounts of STFB mRNA by northern blot analysis in an affected individual. We present haplotype and mutational analyses of our collection of 20 unrelated EPM1 patients and families from different ethnic groups. We identify four different mutations, the most common of which consists of an unstable approximately 600-900 bp insertion which is resistant to PCR amplification. This insertion maps to a 12-bp polymorphic tandem repeat located in the 5' flanking region of the STFB gene, in the region of the promoter. The size of the insertion varies between different EPM1 chromosomes sharing a common haplotype and a common origin, suggesting some level of meiotic instability over the course of many generations. This dynamic mutation, which appears distinct from conventional trinucleotide repeat expansions, may arise via a novel mechanism related to the instability of tandemly repeated sequences.
(i) The presence of a missense mutation in the SURF1 gene may correlate with a milder course and longer survival of Leigh patients, (ii) normal magnetic resonance imaging (MRI) findings, normal blood lactate value, and only mild decrease of cytochrome c oxidase (COX) activity are not sufficient reasons to forego SURF1 mutation analysis in differential diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.