The pivotal importance of TiO2 as a technological material involves most applications in an aqueous environment, but the single‐crystal TiO2/bulk‐water interfaces are almost completely unexplored, since up to date solid/liquid interfaces are more difficult to access than surfaces in ultrahigh vacuum (UHV). Only a few techniques (as scanning probe microscopy) offer the opportunity to explore these systems under realistic conditions. The rutile TiO2(110) surface immersed in high‐purity water is studied by in situ scanning tunneling microscopy. The large‐scale surface morphology as obtained after preparation under UHV conditions remains unchanged upon prolonged exposure to bulk water. Moreover, in contrast to UHV, atomically resolved images show a twofold periodicity along the [001] direction, indicative of an ordered structure resulting from the hydration layer. This is consistent with density‐functional theory based molecular dynamics simulations where neighboring interfacial molecules of the first water layer in contact with the bulk liquid form dimers. By contrast, this dimerization is not observed for a single adsorbed water monolayer, i.e., in the absence of bulk water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.