Article:Fouvry, S., Liskiewicz, T., Kaspa, P.H. et al. (1 more author) (2003) An energy description of wear mechanisms and its applications to oscillating sliding contacts. Wear, Abstract: To quantify wear rates, the Archard approach is classically applied. It relates the wear volume to the product of the sliding distance and the normal load. A wear coefficient is then extrapolated and is supposed to establish the wear resistance of the studied material. This synthesis shows that this approach does not work when the friction coefficient is not constant. It appears to be much more relevant to consider the interfacial shear work as a significant wear parameter. This approach is applied to study the wear response of different steels and then extended to different hard TiN, TiC coatings under reciprocating sliding conditions. By identifying wear energy coefficients the wear quantification can be rationalized and the wear resistance of the studied tribosystems can be classified. This also appears to be a convenient approach to interpret the different wear mechanisms.Metallic materials involving plastic strain are analyzed from FEM computations. The energy balance confirms that a minor part of the dissipated energy is consumed by plasticity, whereas the major part participates in the heat and debris flow through the interface. When a load energy approach is introduced an accumulated density of the dissipated energy variable is considered to quantify the TTS (Tribologically Transformed Structure) formation. A wear "scenario" of metallic structures is then discussed. This energy wear approach is applied to analyze hard coating wear mechanisms focusing on abrasion and oxidation phenomena. The local wear energy analysis is transposed, thus allowing the lifetime of hard coatings to be quantified.
Influence of initial surface roughness on friction and wear processes under fretting conditions was investigated experimentally. Rough surfaces (Ra=0.15-2.52 µm) were prepared on two materials: carbon alloy (AISI 1034) and titanium alloy (Ti-6Al-4V). Strong influence of initial surface roughness on friction and wear processes is reported for both tested materials. Lower coefficient of friction and increase in wear rate was observed for rough surfaces. Wear activation energy is increasing for smoother surfaces. Lower initial roughness of surface subjected to gross slip fretting can delay activation of wear process and reduce wear rate, however it can slightly increase the coefficient of friction. Graphical Abstract
In the case of surface coatings application it is crucial to establish when the substrate is reached to prevent from catastrophic consequences. (DELETE : Moreover, a reliable selection of surface treatment is of great interest to industrial applications. However, regarding the lifetime of the coatings, selection criteria often depends on the experimental approaches as well as contact configuration and then can not be directly applied to real cases.)In this study a model based on local dissipated energy is develop and related to the friction process. Indeed, the friction dissipated energy is a unique parameter that takes into account the major loading variables which are the pressure, sliding distance and the friction coefficient. To illustrate the approach a sphere/plane (Alumina/TiC) contact is studied under gross slip fretting regime. Considering the contact area extension the wear depth evolution can be predicted from the cumulated dissipated energy density. Nevertheless, some difference is observed between the predicted and detected surface coating endurance. This has been explained by a coating spalling phenomenon observed below a critical residual coating thickness. Introducing an effective wear coating parameter the coating endurance is better quantified and finally an effective energy density threshold, associated to a friction energy 1 capacity approach, is introduced to rationalize the coating endurance prediction. The surface treatment lifetime is then simply deduced from an energy ratio between this specific energy capacity and a mean energy density dissipated per fretting cycle. The stability of this approach has been validated under constant and variable sliding conditions and illustrated through a Energy Density-Coating Endurance chart.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.