The multidimensional positive definite advection transport algorithm (MPDATA) belongs to the group of nonoscillatory forwardin-time algorithms and performs a sequence of stencil computations. MPDATA is one of the major parts of the dynamic core of the EULAG geophysical model. In this work, we outline an approach to adaptation of the 3D MPDATA algorithm to the Intel MIC architecture. In order to utilize available computing resources, we propose the (3 + 1)D decomposition of MPDATA heterogeneous stencil computations. This approach is based on combination of the loop tiling and fusion techniques. It allows us to ease memory/communication bounds and better exploit the theoretical floating point efficiency of target computing platforms. An important method of improving the efficiency of the (3 + 1)D decomposition is partitioning of available cores/threads into work teams. It permits for reducing inter-cache communication overheads. This method also increases opportunities for the efficient distribution of MPDATA computation onto available resources of the Intel MIC architecture, as well as Intel CPUs. We discuss preliminary performance results obtained on two hybrid platforms, containing two CPUs and Intel Xeon Phi. The top-of-the-line Intel Xeon Phi 7120P gives the best performance results, and executes MPDATA almost 2 times faster than two Intel Xeon E5-2697v2 CPUs.
This article provides a comprehensive study of the impact of performance optimizations on the energy efficiency of a real-world CFD application called MPDATA, as well as an insightful analysis of performance-energy interaction of these optimizations with the underlying hardware that represents the first generation of Intel Xeon Scalable processors. Considering the MPDATA iterative application as a use case, we explore the fundamentals of energy and performance analysis for a memory-bound application when exposed to a set of optimization steps that increase the application performance, by improving the operational intensity of code and utilizing resources more efficiently. It is shown that for memory-bound applications, optimizing toward high performance could be a powerful strategy for improving the energy efficiency as well. In fact, for the considered performance optimizations, the energy gain is correlated with the performance gain but with varying degrees. As a result, these optimizations allow improving both performance and energy consumption radically, up to about 10.9 and 8.8 times, respectively. The impact of the Intel AVX-512 SIMD extension on the energy consumption and performance is demonstrated. Also, we discover limitations on the usability of CPU frequency scaling as a tool for balancing energy savings with admissible performance losses.
Summary This article provides a comprehensive study of OpenCL heterogeneous programming for porting applications to CPU–GPU computing platforms, with a real‐life application for the solidification modeling. The aim is to achieve a flexible workload distribution between available CPU–GPU resources and optimize application performance. Considering the solidification application as a use case, we explore the necessary steps required for (i) adaptation of an application to CPU–GPU platforms, and (ii) mapping the application workload onto the OpenCL programming model. The adaptation is based on a reformulation of steps developed previously for CPU–MIC architectures. The mapping process allows us to utilize OpenCL for harnessing CPU and GPU cores using data parallelism, as well as for the management of available compute devices with task parallelism. The resulting OpenCL code's performance and energy efficiency is experimentally studied for two platforms with powerful GPUs of various generations (with Kepler and Volta architectures). The experiments confirm the performance advantage of using computing resources of both GPUs and CPUs. The achieved benefit depends on the relationship between the computing power of CPUs and GPUs. Moreover, this gain entails the growth of the average power that increases the energy consumed during the application execution.
Summary This work is a part of the global tendency to use modern computing systems for modeling the phase‐field phenomena. The main goal of this article is to improve the performance of a parallel application for the solidification modeling, assuming the dynamic intensity of computations in successive time steps when calculations are performed using a carefully selected group of nodes in the grid. A two‐step method is proposed to optimize the application for multi‐/manycore architectures. In the first step, the loop fusion is used to execute all kernels in a single nested loop and reduce the number of conditional operators. These modifications are vital to implementing the second step, which includes an algorithm for the dynamic workload prediction and load balancing across cores of a computing platform. Two versions of the algorithm are proposed—with the 1D and 2D maps used for predicting the computational domain within the grid. The proposed optimizations allow increasing the application performance significantly for all tested configurations of computing resources. The highest performance gain is achieved for two Intel Xeon Platinum 8180 CPUs, where the new code based on the 2D map yields the speedup of up to 2.74 times, while the usage of the proposed method with the 2D map for a single KNL accelerator permits reducing the execution time up to 1.91 times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.