We describe a method that directly relates tissue neuropathological analysis to medical imaging. Presently, only indirect and often tenuous relationships are made between imaging (such as MRI or x-ray computed tomography) and neuropathology. We present a biochemistry-based, quantitative neuropathological method that can help to precisely quantify information provided by in vivo proton magnetic resonance spectroscopy (
Conformation of N-acetyl-(E)-dehydrophenylalanine N', N'-dimethylamide (Ac-(E)-ΔPhe-NMe(2)) in solution, a member of (E)-α, β-dehydroamino acids, was studied by NMR and infrared spectroscopy and the results were compared with those obtained for (Z) isomer. To support the spectroscopic interpretation, the Φ, Ψ potential energy surfaces were calculated at the MP2/6-31 + G(d,p) level of theory in chloroform solution modeled by the self-consistent reaction field-polarizable continuum model method. All minima were fully optimized by the MP2 method and their relative stabilities were analyzed in terms of π-conjugation, internal H-bonds and dipole interactions between carbonyl groups. The obtained NMR spectral features were compared with theoretical nuclear magnetic shieldings, calculated using Gauge Independent Atomic Orbitals (GIAO) approach and rescaled to theoretical chemical shifts using benzene as reference. The calculated indirect nuclear spin-spin coupling constants were compared with available experimental parameters.
The interaction of phenylalanine diamide (Ac-Phe-NHMe) with egg yolk lecithin (EYL) in chloroform was studied by (1)H and (13)C NMR. Six complexes EYL-Ac-Phe-NHMe, stabilized by N-H···O or/and C-H···O hydrogen bonds, were optimized at M06-2X/6-31G(d,p) level. The assignment of EYL and Ac-Phe-NHMe NMR signals was supported using GIAO (gauge including atomic orbital) NMR calculations at VSXC and B3LYP level of theory combined with STO-3Gmag basis set. Results of our study indicate that the interaction of peptides with lecithin occurs mainly in the polar 'head' of the lecithin. Additionally, the most probable lecithin site of H-bond interaction with Ac-Phe-NHMe is the negatively charged oxygen in phosphate group that acts as proton acceptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.