This study determines the influence of transformed root (TR) extract of Leonurus sibiricus L. on various grades (I-III) of human glioma cells derived from patients. This plant occurs in southern Asia and Siberia and is widely used as a medicinal plant with various biological activities. Chromatographic profile of TR extract have revealed the presence of various polyphenolic compounds (4-hydroxybenzoic acid, gentisic acid, vanilic acid, 1,3-dicaffeoylquinic acid, α-resorcylic acid). We found TR root extract to have antiproliferative activity on glioma cells after 24 h of treatment. TR root extract induces apoptosis on various grades (I-III) of human glioma cells by the generation of reactive oxygen species (ROS) along with concurrent loss of mitochondrial membrane potential, enhanced S and G2/M phases of the cell cycle, and altered mRNA levels of Bax, Bcl-2, p53, Cas-3, Cas-8 and Cas-9 factors involved in apoptosis. This work for the first time demonstrate that TR extract from L. sibiricus root has the potential to activate apoptosis in grade I-III human glioma cells through the intrinsic and extrinsic pathways.
Main conclusionThis review presents origins, structure and expression of chloroplast genomes. It also describes their sequencing, analysis and modification, focusing on potential practical uses and biggest challenges of chloroplast genome modification.During the evolution of eukaryotes, cyanobacteria are believed to have merged with host heterotrophic cell. Afterward, most of cyanobacterial genes from cyanobacteria were transferred to cell nucleus or lost in the process of endosymbiosis. As a result of these changes, a primary plastid was established. Nowadays, plastid genome (plastome) is almost always circular, has a size of 100–200 kbp (120–160 in land plants), and harbors 100–120 highly conserved unique genes. Plastids have their own gene expression system, which is similar to one of their cyanobacterial ancestors. Two different polymerases, plastid-derived PEP and nucleus-derived NEP, participate in transcription. Translation is similar to the one observed in cyanobacteria, but it also utilizes protein translation factors and positive regulatory mRNA elements absent from bacteria. Plastoms play an important role in genetic transformation. Transgenes are introduced into them either via gene gun (in undamaged tissues) or polyethylene glycol treatment (when protoplasts are targeted). Antibiotic resistance markers are the most common tool used for selection of transformed plants. In recent years, plastome transformation emerged as a promising alternative to nuclear transformation because of (1) high yield of target protein, (2) removing the risk of outcrossing with weeds, (3) lack of silencing mechanisms, and (4) ability to engineer the entire metabolic pathways rather than single gene traits. Currently, the main directions of such research regard: developing efficient enzyme, vaccine antigen, and biopharmaceutical protein production methods in plant cells and improving crops by increasing their resistance to a wide array of biotic and abiotic stresses. Because of that, the detailed knowledge of plastome structure and mechanism of functioning started to play a major role.
Pathogenic bacteria contaminating food or animal feed cause serious economic losses in the health sector as well as is in the agriculture and food industry. The development of bacterial resistance due to the misuse of antibiotics and chemicals, especially in the farm industry, can bring dangerous effects for the global population therefore new safe biological antimicrobial solutions are urgently needed. In this paper, we investigate biological alternatives to antibiotics against foodborne pathogens. The most promising alternatives include antimicrobial proteins, bacteriophages, probiotics, and plant-based substances. Each described group of substances is efficient against specific foodborne bacteria and has a preferred use in an explicit application. The advantages and drawbacks of each method are outlined in the final section. Biological antibacterial solutions are usually easily degradable. In contrast to antibiotics or chemical/physical methods, they are also far more specific. When introducing new antibacterial methods it is crucial to check their safety and ability to induce resistance mechanisms. Moreover, it is important to assess its activity to inhibit or kill in viable but nonculturable cells (VBNC) state and biofilm forms. VBNC bacteria are considered a threat to public health and food safety due to their possibility of remaining viable and virulent. Biological alternatives to antibiotics complete the majority of the advantages needed for a safe and efficient antimicrobial product. However, further research is necessary to fully implement those solutions to the market.
Antibiotic-resistant microorganisms causing a life-threatening infection pose a serious challenge for modern science. The rapidly growing number of incidents for which the use of standard antibiotics is ineffective forces us to develop new alternative methods of killing microorganisms. Antimicrobial proteins and peptides (AMPs) can be promising candidates to solve this problem. Colicin-M is one of the representatives of this group and is naturally produced by Escherichia coli acting on other closely related bacterial strains by disrupting their outer cell membrane. This bacteriocin has huge potential as a potent antimicrobial agent, especially, since it was recognized by the FDA as safe. In this work, we present the expression of colicin M in model transgenic Nicotiana tabacum L. plants. We demonstrate that purified colicin retains its antibacterial activity against the control Escherichia coli strains and clinical isolates of Escherichia coli and Klebsiella pneumoniae. Our results also show that plant-derived ColM is not toxic for L929 and HeLa cell line, which allows us to suppose that plant-based expression could be an alternative production method of such important proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.