The BCR/ABL oncogenic tyrosine kinase activates phosphatidylinositol 3-kinase (PI-3k) by a mechanism that requires binding of BCR/ABL to p85, the regulatory subunit of PI-3k, and an intact BCR/ABL SH2 domain. SH2 domain BCR/ABL mutants deficient in PI-3k activation failed to stimulate Akt kinase, a recently identified PI-3k downstream effector with oncogenic potential, but did activate p21 RAS and p70 S6 kinase. The PI-3k/Akt pathway is essential for BCR/ABL leukemogenesis as indicated by experiments demonstrating that wortmannin, a PI-3k specific inhibitor at low concentrations, suppressed BCR/ABL-dependent colony formation of murine marrow cells, and that a kinase-deficient Akt mutant with dominant-negative activity inhibited BCR/ABL-dependent transformation of murine bone marrow cells in vitro and suppressed leukemia development in SCID mice. In complementation assays using mouse marrow progenitor cells, the ability of transformation-defective SH2 domain BCR/ABL mutants to induce growth factor-independent colony formation and leukemia in SCID mice was markedly enhanced by expression of constitutively active Akt. In retrovirally infected mouse marrow cells, the BCR/ABL mutant lacking the SH2 domain was unable to upregulate the expression of c-Myc and Bcl-2; in contrast, expression of a constitutively active Akt mutant induced Bcl-2 and c-Myc expression, and stimulated the transcription activation function of c-Myc. Together, these data demonstrate the requirement for the BCR/ABL SH2 domain in PI-3k activation and document the essential role of the PI-3k/Akt pathway in BCR/ABL leukemogenesis.
RAD51 is one of six mitotic human homologs of the E. coli RecA protein (RAD51-Paralogs) that play a central role in homologous recombination and repair of DNA double-strand breaks (DSBs). Here we demonstrate that RAD51 is important for resistance to cisplatin and mitomycin C in cells expressing the BCR/ABL oncogenic tyrosine kinase. BCR/ABL significantly enhances the expression of RAD51 and several RAD51-Paralogs. RAD51 overexpression is mediated by a STAT5-dependent transcription as well as by inhibition of caspase-3-dependent cleavage. Phosphorylation of the RAD51 Tyr-315 residue by BCR/ABL appears essential for enhanced DSB repair and drug resistance. Induction of the mammalian RecA homologs establishes a unique mechanism for DNA damage resistance in mammalian cells transformed by an oncogenic tyrosine kinase.
Signal transducer and activator of transcription (STAT)5 is constitutively activated in BCR/ ABL-expressing cells, but the mechanisms and functional consequences of such activation are unknown. We show here that BCR/ABL induces phosphorylation and activation of STAT5 by a mechanism that requires the BCR/ABL Src homology (SH)2 domain and the proline-rich binding site of the SH3 domain. Upon expression in 32Dcl3 growth factor–dependent myeloid precursor cells, STAT5 activation–deficient BCR/ABL SH3+SH2 domain mutants functioned as tyrosine kinase and activated Ras, but failed to protect from apoptosis induced by withdrawal of interleukin 3 and/or serum and did not induce leukemia in severe combined immunodeficiency mice. In complementation assays, expression of a dominant-active STAT5B mutant (STAT5B-DAM), but not wild-type STAT5B (STAT5B-WT), in 32Dcl3 cells transfected with STAT5 activation–deficient BCR/ABL SH3+SH2 mutants restored protection from apoptosis, stimulated growth factor–independent cell cycle progression, and rescued the leukemogenic potential in mice. Moreover, expression of a dominant-negative STAT5B mutant (STAT5B-DNM) in 32Dcl3 cells transfected with wild-type BCR/ABL inhibited apoptosis resistance, growth factor–independent proliferation, and the leukemogenic potential of these cells. In retrovirally infected mouse bone marrow cells, expression of STAT5B-DNM inhibited BCR/ABL-dependent transformation. Moreover, STAT5B-DAM, but not STAT5B-WT, markedly enhanced the ability of STAT5 activation–defective BCR/ABL SH3+SH2 mutants to induce growth factor–independent colony formation of primary mouse bone marrow progenitor cells. However, STAT5B-DAM did not rescue the growth factor–independent colony formation of kinase-deficient K1172R BCR/ABL or the triple mutant Y177F+R522L+ Y793F BCR/ABL, both of which also fail to activate STAT5. Together, these data demonstrate that STAT5 activation by BCR/ABL is dependent on signaling from more than one domain and document the important role of STAT5-regulated pathways in BCR/ABL leukemogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.