The genus
Secale
is small but very diverse. Despite the high economic importance, phylogenetic relationships of rye species have not been fully determined, and they are extremely important for the process of breeding of new cultivars that can be enriched with functional traits derived from wild rye species. The study analyzed the degree of relationship of 35 accessions of the genus
Secale
, representing 13 most often distinguished species and subspecies, originating from various seed collections in the world, based on the analysis of non-coding regions of the chloroplast (cpDNA) and mitochondrial genome (mtDNA), widely used in phylogenetic and population plant studies, because of a higher rate of evolution than the coding regions. There was no clear genetic structure between different species and subspecies, which may indicated the introgression between these taxa. The obtained data confirmed that
S
.
vavilovii
was very similar to
S
.
cereale
, which confirmed the assumption that they might share a common ancestor. The results also confirmed the divergence of
S
.
sylvestre
from other species and subspecies of rye. Areas that may be useful molecular markers in studies on closely related species of the genus
Secale
were also indicated.
The Western capercaillie (Tetrao urogallus) is a specific bird species, which, despite its very broad distribution and large global population size, is highly endangered in many Western and Central European countries. According to the species situation, in many countries (including Poland), breeding and reintroduction programmes have been started. One of the most complex and large-scale reintroduction programmes was started in Bory Dolnośląskie Forest, and the Capercaillie Breeding Centre in Wisła Forest District was used as one of the sources of individuals for reintroduction. As genetic tools provide essential knowledge about species biodiversity, which is crucially important during the breeding process and reintroduction, both captive and reintroduced grouse populations were genetically analysed. We were particularly interested in genetic diversity of the individuals in both populations and the genetic relationship between them, as well as between them and other capercaillie representatives from their current range. To fulfil these goals we determined nine microsatellite loci along with a fragment of the mitochondrial control region. Genetic diversity parameters were moderate to high compared to populations from other Central and Western European countries. Both populations were clustered into three distinct genetic clades based on microsatellites. Phylogenetic analysis placed all mitochondrial haplotypes we revealed in the Eurasian clade. The present results will play an important role as they will help to preserve and maximize genetic diversity in captive populations, and will provide a basis for future monitoring of the reintroduction process.
Blue-crowned Parakeet (Aratinga acuticaudata) is a South American parrot species with a taxonomic position not confirmed by molecular studies. We sequenced full mitochondrial genome and constructed phylogenetic tree using sequences of mitochondrial ND2 gene from A. acuticaudata and some other representatives of Conures group. Our results confirmed previously described distribution of Aratinga species into three clades, but surprisingly did not classify Blue-crowned Parakeet to any of them. We found that A. acuticaudata shares the closest relationship with Diopsittaca nobilis and forms a separate clade together with Guaruba guarouba and Leptosittaca branickii species with a significant node. Our results confirm lack of monophyly of the genus Aratinga and underline the need of its taxonomic revision.
The Yellow-shouldered Amazon (Amazona barbadensis) is the sole parrot of the genus Amazona that inhabits only dry forests. Its population has been dropping; therefore it has been the topic of many studies and conservation efforts. However, the phylogenetic relationship of this species to potential relatives classified within the Yellow-Headed Amazon (YHA) complex are still not clear. Therefore, we used more extensive data sets, including the newly sequenced mitochondrial genome of A. barbadensis, to conduct phylogenetic analyses. Various combinations of genes and many phylogenetic approaches showed that A. barbadensis clustered significantly with A. ochrocephala ochrocephala from Colombia and Venezuela, which created the Northern South American (NSA) lineage, clearly separated from two other lineages within the YHA complex, the Central (CA) and South American (SA). Tree topology tests and exclusion of rapidly evolving sites provided support for a NSA+SA grouping. We propose an evolutionary scenario for the YHA complex and its colonization of the American mainland. The NSA lineage likely represents the most ancestral lineage, which derived from Lesser Antillean Amazons and colonized the northern coast of Venezuela about a million years ago. Then, Central America was colonized through the Isthmus of Panama, which led to the emergence of the CA lineage. The southward expansion to South America and the origin of the SA lineage happened almost simultaneously. However, more intensive or prolonged gene flow or migrations have led to much weaker geographic differentiation of genetic markers in the SA than in the CA lineage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.