Purpose The use of stem cells in regenerative medicine offers hope to treat numerous orthopaedic disorders, including articular cartilage defects. Although much research has been carried out on chondrogenesis, this complicated process is still not well understood and much more research is needed. The present review provides an overview of the stages of chondrogenesis and describes the effects of various growth factors, which act during the multiple steps involved in stem celldirected differentiation towards chondrocytes. Methods The current literature on stem cell-directed chondrogenesis, in particular the role of members of the transforming growth factor-β (TGF-β) superfamily-TGF-βs, bone morphogenetic proteins (BMPs) and fibroblast growth factors (FGFs)-is reviewed and discussed. Results Numerous studies have reported the chondrogenic potential of both adult-and embryonic-like stem cells and the role of growth factors in programming differentiation of these cells towards chondrocytes. Mesenchymal stem cells (MSCs) are adult multipotent stem cells, whereas induced pluripotent stem cells (iPSC) are reprogrammed pluripotent cells. Although better understanding of the processes involved in the development of cartilage tissues is necessary, both cell types may be of value in the clinical treatment of cartilage injuries or osteoarthritic cartilage lesions. Conclusions MSCs and iPSCs both present unique characteristics. However, at present, it is still unclear which cell type is most suitable in the treatment of cartilage injuries.
Primary cancer cell lines are ex vivo cell cultures originating from resected tissues during biopsies and surgeries. Primary cell cultures are objects of intense research due to their high impact on molecular biology and oncology advancement. Initially, the patient-derived specimen must be subjected to dissociation and isolation. Techniques for tumour dissociation are usually reliant on the organisation of connecting tissue. The most common methods include enzymatic digestion (with collagenase, dispase, and DNase), chemical treatment (with ethylene diamine tetraacetic acid and ethylene glycol tetraacetic acid), or mechanical disaggregation to obtain a uniform cell population. Cells isolated from the tissue specimen are cultured as a monolayer or three-dimensional culture, in the form of multicellular spheroids, scaffold-based cultures (i.e., organoids), or matrix-embedded cultures. Every primary cell line must be characterised to identify its origin, purity, and significant features. The process of characterisation should include different assays utilising specific (extra- and intracellular) markers. The most frequently used approaches comprise immunohistochemistry, immunocytochemistry, western blot, flow cytometry, real-time polymerase chain reaction, karyotyping, confocal microscopy, and next-generation sequencing. The growing body of evidence indicates the validity of the usage of primary cancer cell lines in the formulation of novel anti-cancer treatments and their contribution to drug development.
Stem cells (SCs) are a promising approach to regenerative medicine, with the potential to treat numerous orthopedic disorders, including osteo-degenerative diseases. The development of human-induced pluripotent stem cells (hiPSCs) has increased the potential of SCs for new treatments. However, current methods of differentiating hiPSCs into chondrocyte-like cells are suboptimal and better methods are needed. The aim of the present study was to assess four different chondrogenic differentiation protocols to identify the most efficient method of generating hiPSC-derived chondrocytes. For this study, hiPSCs were obtained from primary human dermal fibroblasts (PHDFs) and differentiated into chondrocyte-like cells using four different protocols: 1) monolayer culture with defined growth factors (GF); 2) embryoid bodies (EBs) in a chondrogenic medium with TGF-β3 cells; 3) EBs in chondrogenic medium conditioned with human chondrocytes (HC-402-05a cell line) and 4) EBs in chondrogenic medium conditioned with human chondrocytes and supplemented with TGF-β3. The cells obtained through these four protocols were evaluated and compared at the mRNA and protein levels. Although chondrogenic differentiation of hiPSCs was successfully achieved with all of these protocols, the two fastest and most cost-effective methods were the monolayer culture with GFs and the medium conditioned with human chondrocytes. Both of these methods are superior to other available techniques. The main advantage of the conditioned medium is that the technique is relatively simple and inexpensive while the directed method (i.e., monolayer culture with GFs) is faster than any protocol described to date because it is does not require additional steps such as EB formation.Electronic supplementary materialThe online version of this article (doi:10.1007/s12015-016-9708-y) contains supplementary material, which is available to authorized users.
Brachydactyly refers to shortening of digits due to hypoplasia or aplasia of bones forming the hands and/or feet. Isolated brachydactyly type E (BDE), which is characterized by shortened metacarpals and/or metatarsals, results in a small proportion of patients from HOXD13 or PTHLH mutations, although in the majority of cases molecular lesion remains unknown. BDE, like other brachydactylies, shows clinical heterogeneity with highly variable intrafamilial and interindividual expressivity. In this study, we investigated two Polish cases (one familial and one sporadic) presenting with BDE and additional symptoms due to novel PTHLH mutations. Apart from BDE, the affected family showed short stature, mild craniofacial dysmorphism and delayed bone age. Sanger sequencing of PTHLH revealed a novel heterozygous frameshift mutation c.258delC(p.N87Tfs*18) in two affected individuals and one relative manifesting mild brachydactyly. The sporadic patient, in addition to BDE, presented with craniofacial dysmorphism, normal stature and bone age, and was demonstrated to carry a de novo heterozygous c.166C>T(p.R56*) mutation. Our paper reports on the two novel truncating PTHLH variants, resulting in variable combination of BDE and other symptoms. Data shown here expand the knowledge on the phenotypic presentation of PTHLH mutations, highlighting significant clinical variability and incomplete penetrance of the PTHLH-related symptoms.
Greig cephalopolysyndactyly syndrome (GCPS) and isolated preaxial polydactyly type IV (PPD-IV) are rare autosomal dominant disorders, both caused by mutations in the GLI3 gene. GCPS is mainly characterised by craniofacial abnormalities (macrocephaly/prominent forehead, hypertelorism) and limb malformations, such as PPD-IV, syndactyly and postaxial polydactyly type A or B (PAPA/B). Mutations in the GLI3 gene can also lead to Pallister–Hall syndrome (PHS) and isolated PAPA/B. In this study, we investigated 16 unrelated probands with the clinical diagnosis of GCPS/PPD-IV and found GLI3 mutations in 12 (75 %) of them (nine familial and three sporadic cases). We also performed a detailed clinical evaluation of all 12 GLI3-positive families, with a total of 27 patients. The hallmark triad of GCPS (preaxial polydactyly, macrocephaly/prominent forehead, hypertelorism) was present in 14 cases (52 %), whereas at least one typical dysmorphic feature was manifested in 17 patients (63 %). Upon sequencing of the GLI3 gene, we demonstrated eight novel and two previously reported heterozygous point mutations. We also performed multiplex ligation-dependent probe amplification (MLPA) to screen for intragenic copy number changes and identified heterozygous deletions in the two remaining cases (16.7 %). Our findings fully support previous genotype–phenotype correlations, showing that exonic deletions, missense mutations, as well as truncating variants localised out of the middle third of the GLI3 gene result in GCPS/PPD-IV and not PHS. Additionally, our study shows that intragenic GLI3 deletions may account for a significant proportion of GCPS/PPD-IV causative mutations. Therefore, we propose that MLPA or quantitative polymerase chain reaction (qPCR) should be implemented into routine molecular diagnostic of the GLI3 gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.