Despite the widespread use of sonication for individualization of nanomaterials, its destructive nature is rarely acknowledged. In this study, we demonstrated how exposure of the material to a hostile sound wave environment can be limited by the application of another preprocessing step. Single-walled carbon nanotubes (CNTs) were initially ground in a household coffee grinder, which enabled facile deagglomeration thereof. Such a simple approach enabled us to obtain high-quality CNT dispersion at reduced sonication time. Most importantly, electrical conductivity of free-standing films prepared from these dispersion was improved almost fourfold as compared with unground material eventually reaching 1067 ± 34 S/cm. This work presents a new approach as to how electrical properties of nanocarbon ensembles may be enhanced without the application of doping agents, the presence of which is often ephemeral.
In this study, we investigated the catalytic performance of Ru nanoparticles (NPs) supported on Ni-nanowires for the first time. This appears to be a highly efficient catalyst for low-temperature methanation, e.g., ca. 100% conversion and 100% of CH4 selectivity can be achieved at ca. 179 °C, while the turnover frequency (TOF) value was 2479.2 h−1. At the same time, the onset of a reaction was observed at a temperature as low as 130 °C. The comparison of nano-Pd and nano-Ru supported on Ni-nanowires enabled us to prove that oxidized surface metals are highly important for the high activity of the investigated nano-Ru@nanowired-Ni. Moreover, similar to the microscopic Sabatier rule, which indicates that some optimal reactivity level of a catalyst exists, we showed that Ni-nanowires (a higher specific surface area than a standard metal surface, e.g., in the form of a metal foam, but lower than nano-sized materials) significantly enhances the performance of the Ru-Ni catalytic system.
We have demonstrated that large diameter (1.8 ± 0.4 nm) carbon nanotubes (CNTs) can be separated by means of the aqueous two-phase extraction (ATPE). This rapid and convenient tool has enabled us to isolate fractions of particular CNT diameter distribution. We have shown how a range of parameters can be used to fine tune the characteristics of the isolated material. Interestingly, by varying the pH of the medium, we have suppressed the extraction of low diameter CNTs and only large diameter CNTs were obtained. A number of other factors such as selected surfactant concentration steps, temperature or amount of starting CNT material have been found to have a significant effect on the end result of the CNT differentiation. The findings have provided us with more insight regarding the underlying mechanics of ATPE for processing polydisperse CNT mixtures.
We have demonstrated a convenient method of synthesizing nickel nanowires (NiNWs), which could be easily tuned to produce materials with a carefully defined nanostructure. By varying the concentration of the Ni precursor, pH of the medium or reaction temperature, we directly affected the diameter of the formed product as well as the yield of the process. The obtained material consisted of straight bundles of NiNWs, which revealed powerful catalytic action for the reduction of nitroarenes to appropriate amine derivatives. A selection of substrates were employed and all of them were successfully converted into the corresponding aromatic amine despite the presence of different substituents on the aromatic ring with high yields, even in large scale reactions. The results showed that NiNW-based catalysts could constitute efficient catalytic systems for the synthesis of aryl amines at industrial levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.