Deregulated melanogenesis is involved in melanomagenesis and melanoma progression and resistance to therapy. Vitamin D analogs have anti-melanoma activity. While the hypercalcaemic effect of the active form of Vitamin D (1,25(OH)2D3) limits its therapeutic use, novel Vitamin D analogs with a modified side chain demonstrate low calcaemic activity. We therefore examined the effect of secosteroidal analogs, both classic (1,25(OH)2D3 and 25(OH)D3), and novel relatively non-calcemic ones (20(OH)D3, calcipotriol, 21(OH)pD, pD and 20(OH)pL), on proliferation, colony formation in monolayer and soft-agar, and mRNA and protein expression by melanoma cells. Murine B16-F10 and hamster Bomirski Ab cell lines were shown to be effective models to study how melanogenesis affects anti-melanoma treatment. Novel Vitamin D analogs with a short side-chain and lumisterol-like 20(OH)pL efficiently inhibited rodent melanoma growth. Moderate pigmentation sensitized rodent melanoma cells towards Vitamin D analogs, and altered expression of key genes involved in Vitamin D signaling, which was opposite to the effect on heavily pigmented cells. Interestingly, melanogenesis inhibited ligand-induced Vitamin D receptor translocation and ligand-induced expression of VDR and CYP24A1 genes. These findings indicate that melanogenesis can affect the anti-melanoma activity of Vitamin D analogs in a complex manner.
Osteosarcoma is one of the most malignant tumors of childhood and adolescence that is often resistant to standard chemo- and radio-therapy. Geldanamycin and geldanamycin analogs have been recently studied as potential anticancer agents for osteosarcoma treatment. Here, for the first time, we have presented novel anticancer mechanisms of geldanamycin biological activity. Moreover, we demonstrated an association between the effects of geldanamycin on the major heat shock proteins (HSPs) and the overall survival of highly metastatic human osteosarcoma 143B cells. We demonstrated that the treatment of 143B cells with geldanamycin caused a subsequent upregulation of cytoplasmic Hsp90 and Hsp70 whose activity is at least partly responsible for cancer development and drug resistance. On the other hand, geldanamycin induced upregulation of Hsp60 gene expression, and a simultaneous loss of hyperacetylated Hsp60 mitochondrial protein pool resulting in decreased viability and augmented cancer cell death. Hyperacetylation of Hsp60 seems to be associated with anticancer activity of geldanamycin. In light of the fact that mitochondrial dysfunction plays a critical role in the apoptotic signaling pathway, the presented data may support a hypothesis that Hsp60 can be another functional part of mitochondria-related acetylome being a potential target for developing novel anticancer strategies.
Colorectal cancer (CRC) is an emerging global problem with the rapid increase in its incidence being associated with an unhealthy lifestyle. Epidemiological studies have shown that decreased levels of vitamin D3 significantly increases the risk of CRC. Furthermore, negative effects of vitamin D3 deficiency can be compensated by appropriate supplementation. Vitamin D3 was shown to inhibit growth and induce differentiation of cancer cells, however, excessive vitamin D3 intake leads to hypercalcemia. Thus, development of efficient vitamin D3 analogues with limited impact on calcium homeostasis is an important scientific and clinically relevant task. The aims of the present study were to compare the antiproliferative potential of classic vitamin D3 metabolites (1α,25(OH)2D3 and 25(OH)D3) with selected low calcemic analogues (calcipotriol and 20(OH)D3) on CRC cell lines and to investigate the expression of vitamin D-related genes in CRC cell lines and clinical samples. Vitamin D3 analogues exerted anti-proliferative effects on all CRC cell lines tested. Calcipotriol proved to be as potent as 1α,25(OH)2D3 and had more efficacy than 20-hydroxyvitamin D3. In addition, the analogs tested effectively inhibited the formation of colonies in Matrigel. The expression of genes involved in 1α,25(OH)2D3 signaling and metabolism varied in cell lines analysed, which explains in part their different sensitivities to the various analogues. In CRC biopsies, there was decreased VDR expression in tumor samples in comparison to the surgical margin and healthy colon samples (P<0.01). The present study indicates that vitamin D3 analogues which have low calcemic activity, such as calcipotriol or 20(OH)D3, are very promising candidates for CRC therapy. Moreover, expression profiling of vitamin D-related genes is likely to be a powerful tool in the planning of anticancer therapy. Decreased levels of VDR and increased CYP24A1 expression in clinical samples underline the importance of deregulation of vitamin D pathways in the development of CRC.
Vitamin D is a precursor for secosteroidal hormones, which demonstrate pleiotropic biological activities, including the regulation of growth and the differentiation of normal and malignant cells. Our previous studies have indicated that the inhibition of melanoma proliferation by a short side-chain, low calcemic analog of vitamin D—21(OH)pD is not fully dependent on the expression of vitamin D receptor (VDR). We have examined the effects of classic vitamin D metabolites, 1,25(OH)2D3 and 25(OH)D3, and two low calcemic vitamin D analogs, (21(OH)pD and calcipotriol), on proliferation, mRNA expression and vitamin D receptor (VDR) translocation in three human melanoma cell lines: WM98, A375 and SK-MEL-188b (subline b of SK-MEL-188, which lost responsiveness to 1,25(OH)2D3 and became VDR−/−CYP27B1−/−). All tested compounds efficiently inhibited the proliferation of WM98 and A375 melanoma cells except SK-MEL-188b, in which only the short side-chain vitamin D analog—21(OH)pD was effective. Overall, 21(OH)pD was the most potent compound in all three melanoma cell lines in the study. The lack of responsiveness of SK-MEL-188b to 1,25(OH)2D3, 25(OH)D3 and calcipotriol is explained by a lack of characteristic transcripts for the VDR, its splicing variants as well as for vitamin D-activating enzyme CYP27B1. On the other hand, the expression of VDR and its splicing variants and other vitamin D related genes (RXR, PDIA3, CYP3A4, CYP2R1, CYP27B1, CYP24A1 and CYP11A1) was detected in WM98 and A375 melanomas with the transcript levels being modulated by vitamin D analogs. The expression of VDR isoforms in WM98 cells was stimulated strongly by calcipotriol. The antiproliferative activities of 21(OH)pD appear not to require VDR translocation to the nucleus, which explains the high efficacy of this noncalcemic pregnacalciferol analog in SK-MEL-188b melanoma, that is, VDR−/−. Therefore, we propose that 21(OH)pD is a good candidate for melanoma therapy, although the mechanism of its action remains to be defined.
Little is known about neuroendocrine regulation of human basophils by components of the hypothalamic-pituitaryadrenal (HPA) axis. Using the basophil cell line KU812 as an in vitro model, we show that these cells express urocortin 1-3, specific isoforms of the corticotropin-releasing hormone (CRH) receptor (CRH-R)1 and CRH-R2 but not CRH itself. The precursor for melanocortins and b-endorphin, proopiomelanocortin, was not detectable, while the melanocortin-1 receptor was present at RNA and protein level in KU812 cells. KU812 basophils furthermore expressed key enzymes involved in steroidogenesis, that is, CYP11A1, CYP17 and CYP21A2. The relevance of steroidogenic enzyme expression in KU812 cells was confirmed by showing the presence of progesterone and 17OH-progesterone in conditioned media of these cells. Our data demonstrate the expression of some but not all components of the HPA axis in human basophils. These cells are not only target cells for multiple hormones of the HPA axis but may also generate neuroendocrine mediators autonomously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.