Human HtrA3 protease, which induces mitochondria-mediated apoptosis, can be a tumor suppressor and a potential therapeutic target in the treatment of cancer. However, there is little information about its structure and biochemical properties. HtrA3 is composed of an N-terminal domain not required for proteolytic activity, a central serine protease domain and a C-terminal PDZ domain. HtrA3S, its short natural isoform, lacks the PDZ domain which is substituted by a stretch of 7 C-terminal amino acid residues, unique for this isoform. This paper presents the crystal structure of the HtrA3 protease domain together with the PDZ domain (ΔN-HtrA3), showing that the protein forms a trimer whose protease domains are similar to those of human HtrA1 and HtrA2. The ΔN-HtrA3 PDZ domains are placed in a position intermediate between that in the flat saucer-like HtrA1 SAXS structure and the compact pyramidal HtrA2 X-ray structure. The PDZ domain interacts closely with the LB loop of the protease domain in a way not found in other human HtrAs. ΔN-HtrA3 with the PDZ removed (ΔN-HtrA3-ΔPDZ) and an N-terminally truncated HtrA3S (ΔN-HtrA3S) were fully active at a wide range of temperatures and their substrate affinity was not impaired. This indicates that the PDZ domain is dispensable for HtrA3 activity. As determined by size exclusion chromatography, ΔN-HtrA3 formed stable trimers while both ΔN-HtrA3-ΔPDZ and ΔN-HtrA3S were monomeric. This suggests that the presence of the PDZ domain, unlike in HtrA1 and HtrA2, influences HtrA3 trimer formation. The unique C-terminal sequence of ΔN-HtrA3S appeared to have little effect on activity and oligomerization. Additionally, we examined the cleavage specificity of ΔN-HtrA3. Results reported in this paper provide new insights into the structure and function of ΔN-HtrA3, which seems to have a unique combination of features among human HtrA proteases.
HtrA2(Omi) protease controls protein quality in mitochondria and plays a major role in apoptosis. Its HtrA2S306A mutant (with the catalytic serine routinely disabled for an X-ray study to avoid self-degradation) is a homotrimer whose subunits contain the serine protease domain (PD) and the regulatory PDZ domain. In the inactive state, a tight interdomain interface limits penetration of both PDZ-activating ligands and PD substrates into their respective target sites. We successfully crystalized HtrA2V226K/S306A, whose active counterpart HtrA2V226K has had higher proteolytic activity, suggesting higher propensity to opening the PD-PDZ interface than that of the wild type HtrA2. Yet, the crystal structure revealed the HtrA2V226K/S306A architecture typical of the inactive protein. To get a consistent interpretation of crystallographic data in the light of kinetic results, we employed molecular dynamics (MD). V325D inactivating mutant was used as a reference. Our simulations demonstrated that upon binding of a specific peptide ligand NH2-GWTMFWV-COOH, the PDZ domains open more dynamically in the wild type protease compared to the V226K mutant, whereas the movement is not observed in the V325D mutant. The movement relies on a PDZ vs. PD rotation which opens the PD-PDZ interface in a lid-like (budding flower-like in trimer) fashion. The noncovalent hinges A and B are provided by two clusters of interfacing residues, harboring V325D and V226K in the C- and N-terminal PD barrels, respectively. The opening of the subunit interfaces progresses in a sequential manner during the 50 ns MD simulation. In the systems without the ligand only minor PDZ shifts relative to PD are observed, but the interface does not open. Further activation-associated events, e.g. PDZ-L3 positional swap seen in any active HtrA protein (vs. HtrA2), were not observed. In summary, this study provides hints on the mechanism of activation of wtHtrA2, the dynamics of the inactive HtrA2V325D, but does not allow to explain an increased activity of HtrA2V226K.
HtrA3 is a proapoptotic protease shown to promote drug‐induced cytotoxicity in lung cancer cells and proposed to have an antitumor effect. However, at the molecular level, the role of HtrA3 in cell death induction is poorly understood. There are two HtrA3 isoforms, a long and a short one, termed HtrA3L and HtrA3S. By performing pull down assays, co‐immunoprecipitation and ELISA, we showed that HtrA3 formed complexes with the X‐linked inhibitor of apoptosis protein (XIAP). The recombinant HtrA3 variants ΔN‐HtrA3L and ‐S, lacking the N‐terminal regions that are not essential for protease activity, cleaved XIAP with a comparable efficiency, though ΔN‐HtrA3S was more active in the presence of cellular extract, suggesting the existence of an activating factor. Immunofluorescence and proximity ligation assays indicated that HtrA3 partially co‐localized with XIAP. Exogenous ΔN‐HtrA3L/S promoted apoptotic death of lung cancer cells treated with etoposide and caused a significant decrease of cellular XIAP levels, in a way dependent on HtrA3 proteolytic activity. These results collectively indicate that both HtrA3 isoforms stimulate drug‐induced apoptotic death of lung cancer cells via XIAP cleavage and thus help to understand the molecular mechanism of HtrA3 function in apoptosis and in cancer cell death caused by chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.