Growth factor-responsive protein kinases regulate expression of genes involved in cell cycle control, cell proliferation and differentiation. To better understand the role of these kinases in the abnormal proliferation of malignant cells, we examined basal and epidermal growth factor (EGF)-inducible mitogen-activated protein kinase (MAPK), p70S6k and p90rsk activities in spontaneous hepatocellular neoplasms (adenomas and carcinomas) from CBA-T6 mice and in L1 sarcoma tumours implanted in livers of BALB/c mice. In spontaneous and implanted hepatic tumours, basal cytoplasmic and nuclear MAPK, p70S6k and p90rsk activities were significantly higher compared to the activities found in the part of the liver uninvolved by the tumour. Interestingly, the activities of these enzymes in the uninvolved tissue of the livers harbouring the tumour were higher compared to the livers from control mice. Basal kinase activities correlated with tumour morphology; they were lower in adenomas than in carcinomas and sarcomas. In contrast to basal activities, EGF-triggered kinase responses in normal livers and hepatic tumours were indistinguishable. Activating protein-1 (AP-1) DNA-binding activity was detected in tumours but not in the adjacent tissues. Constitutively activated kinases and AP-1 transcription factor found in hepatic malignancies are reminiscent of cells activated by EGF, suggesting that EGF and its intracellular effectors play a role in these malignancies. © 2000 Cancer Research Campaign
Two isoforms of cyclooxygenase (COX) participate in growth control; COX-1 is constitutively expressed in most cells, and COX-2 is an inducible enzyme in response to cellular stimuli. An induction of COX-2 found in neoplastic tissues results in increased cell growth, inhibition of apoptosis, activation of angiogenesis, and decreased immune responsiveness. Although both COX-1 and COX-2 inhibitors are suppressors of cell proliferation and appear to be chemopreventive agents for tumorigenesis, the molecular mechanisms mediating antiproliferative effect of COX inhibitors are still not well defined. This study contrasts and compares the effects of aspirin and celecoxib, inhibitors of COX-1 and COX-2, in rat hepatoma HTC-IR cells. The following were assessed: cell proliferation and apoptosis, ornithine decarboxylase (ODC) activity, and pattern expression of three immediate-early genes, c-myc, Egr-1, and c-fos. We have shown that the treatment of hepatocytes in vitro with the selective COX-2 inhibitor, celecoxib, was associated with induction of apoptosis and complete inhibition of cellular proliferation. Aspirin exhibited a small antiproliferative effect that was not associated with apoptosis. Treatment with celecoxib produced dose-and time-dependent decrease in ODC activity. In addition, at higher drug concentration the decrease in ODC activity was greater in proliferating than in resting cells. Much lesser inhibitory effect on ODC activity was observed in aspirin-treated cells. The two COX inhibitors did not change c-myc expression, significantly decreased the expression of Egr-1, and differentially altered expression of c-fos; aspirin did not change, but celecoxib dramatically decreased the levels of c-fos-mRNA. Our study revealed that celecoxib and aspirin share the ability to inhibit ODC activity and alter the pattern of immediate-early gene expression. It seems that some of the observed effects are likely to be related to COX-independent pathways. The precise mechanisms of action of COX inhibitors should be defined before using these drugs for cancer chemopreventive therapy.
Resection of the colon in patients with familial adenomatous polyposis frequently results in the regression of polyps in the remaining rectum, suggesting a reduction of cellular proliferation. These patients remain at risk of developing rectal cancer but whether this risk increases with time is uncertain. Since ornithine decarboxylase activity is associated with cellular proliferation, mucosal ornithine decarboxylase was measured in rectal biopsy specimens from patients with familial adenomatous polyposis after ileorectal anastomosis (n=36) and from normal controls (n=30). The relationship between ornithine decarboxylase activity, age, and time from surgery was also examined. Median ornithine decarboxylase activity in familial adenomatous polyposis patients after ileorectal anastomosis (186, interquartile range (IQR) 107-534 pmol/mg protein/h) was not different from that in control subjects (227, p=06). When patients were divided into three equal groups according to age, however, younger patients (<25 years) had significantly higher activity than both older age groups (p<0.02). Similarly, when patients were stratified according to the time elapsed since surgery, those who had had surgery less than six years previously had a significantly higher ornithine decarboxylase activity than those in whom a longer time interval had elapsed since surgery (p=0.02). These results indicate that after colon resection, ornithine decarboxylase activity in patients with familial adenomatous polyposis is similar to that in normal controls but seems to fall over time. This may explain the regression of rectal polyps after colonic resection in this disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.