Human-made material stocks accumulating in buildings, infrastructure, and machinery play a crucial but underappreciated role in shaping the use of material and energy resources. Building, maintaining, and in particular operating in-use stocks of materials require raw materials and energy. Material stocks create long-term pathdependencies because of their longevity. Fostering a transition toward environmentally sustainable patterns of resource use requires a more complete understanding of stock-flow relations. Here we show that about half of all materials extracted globally by humans each year are used to build up or renew in-use stocks of materials. Based on a dynamic stock-flow model, we analyze stocks, inflows, and outflows of all materials and their relation to economic growth, energy use, and CO 2 emissions from 1900 to 2010. Over this period, global material stocks increased 23-fold, reaching 792 Pg (±5%) in 2010. Despite efforts to improve recycling rates, continuous stock growth precludes closing material loops; recycling still only contributes 12% of inflows to stocks. Stocks are likely to continue to grow, driven by large infrastructure and building requirements in emerging economies. A convergence of material stocks at the level of industrial countries would lead to a fourfold increase in global stocks, and CO 2 emissions exceeding climate change goals. Reducing expected future increases of material and energy demand and greenhouse gas emissions will require decoupling of services from the stocks and flows of materials through, for example, more intensive utilization of existing stocks, longer service lifetimes, and more efficient design. material flow accounting | socioeconomic metabolism | circular economy | carbon emission intensity | manufactured capital T he growing extraction of natural resources, and the waste and emissions resulting from their use, are directly or indirectly responsible for humanity approaching or even surpassing critical planetary boundaries (1). Both decoupling of resource use from economic development and absolute reductions in the use of certain materials and energy sources are imperative for sustainable development (2). The demand for materials and energy is to a large extent driven by constructing, maintaining, and operating inuse stocks of materials (hereafter "material stocks"), or what economists call manufactured capital (buildings, infrastructure, artifacts). These stocks transform material and energy flows into services, such as shelter or mobility (3, 4). The significance of longlived stocks of infrastructure and buildings for determining and potentially reducing future material and energy use and greenhouse gas emissions is increasingly recognized (5, 6). This study investigates the dynamics of global stocks and flows of materials by using and expanding a material flow accounting (MFA) approach. MFA is used in industrial ecology to study the biophysical domain of society, comprising in-use stocks and the processes and flows that maintain and operate these stocks, ...
Strategies toward ambitious climate targets usually rely on the concept of 'decoupling'; that is, they aim at promoting economic growth while reducing the use of natural resources and GHG emissions. GDP growth coinciding with absolute reductions in emissions or resource use is denoted as 'absolute decoupling' , as opposed to 'relative decoupling' , where resource use or emissions increase less so than does GDP. Based on the bibliometric mapping in part I (Wiedenhofer et al, 2020 Environ. Res. Lett. 15 063002), we synthesize the evidence emerging from the selected 835 peer-reviewed articles. We evaluate empirical studies of decoupling related to final/useful energy, exergy, use of material resources, as well as CO 2 and total GHG emissions. We find that relative decoupling is frequent for material use as well as GHG and CO 2 emissions but not for useful exergy, a quality-based measure of energy use. Primary energy can be decoupled from GDP largely to the extent to which the conversion of primary energy to useful exergy is improved. Examples of absolute long-term decoupling are rare, but recently some industrialized countries have decoupled GDP from both production-and, weaklier, consumption-based CO 2 emissions. We analyze policies or strategies in the decoupling literature by classifying them into three groups:(1) Green growth, if sufficient reductions of resource use or emissions were deemed possible without altering the growth trajectory.(2) Degrowth, if reductions of resource use or emissions were given priority over GDP growth. (3) Others, e.g. if the role of energy for GDP growth was analyzed without reference to climate change mitigation. We conclude that large rapid absolute reductions of resource use and GHG emissions cannot be achieved through observed decoupling rates, hence decoupling needs to be complemented by sufficiency-oriented strategies and strict enforcement of absolute reduction targets. More research is needed on interdependencies between wellbeing, resources and emissions.
Summary The international industrial ecology (IE) research community and United Nations (UN) Environment have, for the first time, agreed on an authoritative and comprehensive data set for global material extraction and trade covering 40 years of global economic activity and natural resource use. This new data set is becoming the standard information source for decision making at the UN in the context of the post‐2015 development agenda, which acknowledges the strong links between sustainable natural resource management, economic prosperity, and human well‐being. Only if economic growth and human development can become substantially decoupled from accelerating material use, waste, and emissions can the tensions inherent in the Sustainable Development Goals be resolved and inclusive human development be achieved. In this paper, we summarize the key findings of the assessment study to make the IE research community aware of this new global research resource. The global results show a massive increase in materials extraction from 22 billion tonnes (Bt) in 1970 to 70 Bt in 2010, and an acceleration in material extraction since 2000. This acceleration has occurred at a time when global population growth has slowed and global economic growth has stalled. The global surge in material extraction has been driven by growing wealth and consumption and accelerating trade. A material footprint perspective shows that demand for materials has grown even in the wealthiest parts of the world. Low‐income countries have benefited least from growing global resource availability and have continued to deliver primary materials to high‐income countries while experiencing few improvements in their domestic material living standards. Material efficiency, the amount of primary materials required per unit of economic activity, has declined since around 2000 because of a shift of global production from very material‐efficient economies to less‐efficient ones. This global trend of recoupling economic activity with material use, driven by industrialization and urbanization in the global South, most notably Asia, has negative impacts on a suite of environmental and social issues, including natural resource depletion, climate change, loss of biodiversity, and uneven economic development. This research is a good example of the IE research community providing information for evidence‐based policy making on the global stage and testament to the growing importance of IE research in achieving global sustainable development.
Summary In order to fully comprehend the socioeconomic metabolic (SEM) dynamics and material balance of nations, long‐term accounting of economy‐wide material stock is necessary in parallel to material flow accounts. Nevertheless, material stock accounts have been scarce, isolated, and mostly focused either on single materials, short time spans, or small regions. This study has two objectives: (1) review the state of the art of material stock research in the SEM discourse and (2) present a project to map, in a high level of detail, the in‐use construction material stocks of Japan and its 47 prefectures from the 1940s until the present era. This project documents the two major depositories of material stock: buildings and infrastructure. We describe the challenges and benefits of utilizing a bottom‐up approach, in order to promote its usage in material stock studies. The resulting database presents the accumulation of stock over time, as well as visually displaying the spatial distribution of the stock using geographical information systems (GIS), which, we argue, is an essential aspect of material stock analysis in the context of socioeconomic metabolism research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.