Cellular senescence is a stress response that imposes stable cell-cycle arrest in damaged cells, preventing their propagation in tissues. However, senescent cells accumulate in tissues in advanced age, where they might promote tissue degeneration and malignant transformation. The extent of immune-system involvement in regulating age-related accumulation of senescent cells, and its consequences, are unknown. Here we show that Prf1−/− mice with impaired cell cytotoxicity exhibit both higher senescent-cell tissue burden and chronic inflammation. They suffer from multiple age-related disorders and lower survival. Strikingly, pharmacological elimination of senescent-cells by ABT-737 partially alleviates accelerated aging phenotype in these mice. In LMNA+/G609G progeroid mice, impaired cell cytotoxicity further promotes senescent-cell accumulation and shortens lifespan. ABT-737 administration during the second half of life of these progeroid mice abrogates senescence signature and increases median survival. Our findings shed new light on mechanisms governing senescent-cell presence in aging, and could motivate new strategies for regenerative medicine.
FDA-approved anti–PD-L1 monoclonal antibodies (mAbs) bear the IgG1 isotype, whose scaffolds are either wild-type (e.g., avelumab) or Fc-mutated and lacking Fcγ receptor (FcγR) engagement (e.g., atezolizumab). It is unknown whether variation in the ability of the IgG1 Fc region to engage FcγRs renders mAbs with superior therapeutic activity. In this study, we used humanized FcγR mice to study the contribution of FcγR signaling to the antitumor activity of human anti–PD-L1 mAbs and to identify an optimal human IgG scaffold for PD-L1 mAbs. We observed similar antitumor efficacy and comparable tumor immune responses in mice treated with anti–PD-L1 mAbs with wild-type and Fc-mutated IgG scaffolds. However, in vivo antitumor activity of the wild-type anti–PD-L1 mAb avelumab was enhanced by combination treatment with an FcγRIIB-blocking antibody, which was co-administered to overcome the suppressor function of FcγRIIB in the tumor microenvironment (TME). We performed Fc glycoengineering to remove the fucose subunit from the Fc-attached glycan of avelumab to enhance its binding to the activating FcγRIIIA. Treatment with the Fc-afucosylated version of avelumab also enhanced antitumor activity and induced stronger antitumor immune responses compared with the parental IgG. The enhanced effect by afucosylated PD-L1 antibody was dependent on neutrophils and associated with decreased frequencies of PD-L1
+
myeloid cells and increased infiltration of T cells in the TME. Our data reveal that the current design of FDA-approved anti–PD-L1 mAbs does not optimally harness FcγR pathways and suggest two strategies to enhance FcγR engagement to optimize anti–PD-L1 immunotherapy.
The accumulation of senescent cells promotes aging, but the molecular mechanism that senescent cells use to evade immune clearance and accumulate remains to be elucidated. Here, we report that p16-positive senescent cells upregulate the immune checkpoint protein programmed death-ligand 1 (PD-L1) to accumulate in aging and chronic inflammation. p16-mediated inhibition of CDK4/6 promotes PD-L1 stability in senescent cells via the downregulation of ubiquitin-dependent degradation. p16 expression in infiltrating macrophages induces an immunosuppressive environment that can contribute to increased burden of senescent cells. Treatment with immunostimulatory anti-PD-L1 antibody enhances the cytotoxic T cell activity and leads to elimination of p16, PD-L1-positive cells. Our study uncovers a molecular mechanism of p16-dependent regulation of PD-L1 protein stability in senescent cells and reveals the potential of PD-L1 as a target for treating senescence-mediated age-associated diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.