Flash-based solid state drives (SSDs) have gained a central role in the infrastructure of large-scale datacenters, as well as in commodity servers and personal devices. The main limitation of flash media is its inability to support update-in-place: after data has been written to a physical location, it has to be erased before new data can be written to it. Moreover, SSDs support read and write operations in granularity of pages, while erasures are performed on entire blocks, which often contain hundreds of pages. When erasing a block, any valid data it stores must be rewritten to a clean location. As an SSD eventually wears out with progressing number of erasures, the efficiency of the management algorithm has a significant impact on its endurance. In this paper we first formally define the SSD management problem. We then explore this problem from an algorithmic perspective, considering it in both offline and online settings. In the offline setting, we present a near-optimal algorithm that, given any input, performs a negligible number of rewrites (relative to the input length). We also discuss the hardness of the offline problem. In the online setting, we first consider algorithms that have no prior knowledge about the input. We prove that no deterministic algorithm outperforms the greedy algorithm in this setting, and discuss the possible benefit of randomization. We then augment our model, assuming that each request for a page arrives with a prediction of the next time the page is updated. We design an online algorithm that uses such predictions, and show that its performance improves as the prediction error decreases. We also show that the performance of our algorithm is never worse than that guaranteed by the greedy algorithm, even when the prediction error is large. We complement our theoretical findings with an empirical evaluation of our algorithms, comparing them with the state-of-the-art scheme. The results confirm that our algorithms exhibit an improved performance for a wide range of input traces.
Flash-based solid-state drives (SSDs) are a key component in most computer systems, thanks to their ability to support parallel I/O at sub-millisecond latency and consistently high throughput. At the same time, due to the limitations of the flash media, they perform writes out-of-place, often incurring a high internal overhead which is referred to as write amplification. Minimizing this overhead has been the focus of numerous studies by the systems research community for more than two decades. The abundance of system-level optimizations for reducing SSD write amplification, which is typically based on experimental evaluation, stands in stark contrast to the lack of theoretical algorithmic results in this problem domain. To bridge this gap, we explore the problem of reducing write amplification from an algorithmic perspective, considering it in both offline and online settings. In the offline setting, we present a near-optimal algorithm. In the online setting, we first consider algorithms that have no prior knowledge about the input and show that in this case, the greedy algorithm is optimal. Then, we design an online algorithm that uses predictions about the input. We show that when predictions are relatively accurate, our algorithm significantly improves over the greedy algorithm. We complement our theoretical findings with an empirical evaluation of our algorithms, comparing them with the state-of-the-art scheme. The results confirm that our algorithms exhibit an improved performance for a wide range of input traces.
No abstract
The abundance of system-level optimizations for reducing SSD write amplification, which are usually based on experimental evaluation, stands in contrast to the lack of theoretical algorithmic results in this problem domain. To bridge this gap, we explore the problem of reducing write amplification from an algorithmic perspective, considering it in both offline and online settings. In the offline setting, we present a near-optimal algorithm. In the online setting, we first consider algorithms that have no prior knowledge about the input. We present a worst case lower bound and show that the greedy algorithm is optimal in this setting. Then we design an online algorithm that uses predictions about the input. We show that when predictions are pretty accurate, our algorithm circumvents the above lower bound. We complement our theoretical findings with an empirical evaluation of our algorithms, comparing them with the state-of-the-art scheme. The results confirm that our algorithms exhibit an improved performance for a wide range of input traces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.