In today's social network age, information flowing in networks does not derive solely from external sources; people in the network also independently generate signals. These self-generated signals may not be deliberate lies, but they may not bear any relationship with the truth, either. Following the philosopher Harry G. Frankfurt, we refer to such self-generated signals as bullshit. We present an information diffusion model that allows nodes which hold no value to spread information, capturing the diffusion of bullshit information. The presence of self-generated signals (i.e., bullshit) increases the amount of information available for transmission in the network. However, participants in the spread process respond to the existence of such self-generated information by receiving data from internal sources with caution. These two contradictory forces-the increase in information transmission on the one hand, and in suspicion on the other-result in a two-sided effect of bullshit on the total spread time. We first take a numerical approach, simulating our model on Watts-Strogatz networks and building a decision tree to characterize the effects of bullshit given different network structures. We find that increasing the rate of self-generated information may have either a monotonic or non-monotonic effect on the rumor spread time, depending on the network structure and rate of non-self-generated internal communications. Then, taking an analytical approach, we analyze the spread behavior for cliques, and identify the conditions for monotonic behavior in a 2-clique network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.