This paper provides a comprehensive overview of urban reconstruction. While there exists a considerable body of literature, this topic is still under active research. The work reviewed in this survey stems from the following three research communities: computer graphics, computer vision and photogrammetry and remote sensing. Our goal is to provide a survey that will help researchers to better position their own work in the context of existing solutions, and to help newcomers and practitioners in computer graphics to quickly gain an overview of this vast field. Further, we would like to bring the mentioned research communities to even more interdisciplinary work, since the reconstruction problem itself is by far not solved.
constant inner o set empty: unstable lled: unstable optimized inner o set empty: stable lled: unstable optimized inner & outer o set empty: stable lled: stable original model © http://www.modelplusmodel.com Figure 1: We introduce a method for reduced-order shape optimization of 2-manifolds that uses offset surfaces to deform the shape. Left: a bottle model is generated using offset surfaces with constant offsets. The resulting object is unable to stand. Center: the offsets are optimized such that the bottle can stand if empty, however, if filled it is unstable. Right: the model is optimized to stand both empty and filled. In order to account for that, offset surfaces are added inside and outside of the original shape. AbstractGiven the 2-manifold surface of a 3d object, we propose a novel method for the computation of an offset surface with varying thickness such that the solid volume between the surface and its offset satisfies a set of prescribed constraints and at the same time minimizes a given objective functional. Since the constraints as well as the objective functional can easily be adjusted to specific application requirements, our method provides a flexible and powerful tool for shape optimization. We use manifold harmonics to derive a reduced-order formulation of the optimization problem, which guarantees a smooth offset surface and speeds up the computation independently from the input mesh resolution without affecting the quality of the result. The constrained optimization problem can be solved in a numerically robust manner with commodity solvers. Furthermore, the method allows simultaneously optimizing an inner and an outer offset in order to increase the degrees of freedom. We demonstrate our method in a number of examples where we control the physical mass properties of rigid objects for the purpose of 3d printing.
We propose a novel type of planar-to-spatial deployable structures that we call elastic geodesic grids. Our approach aims at the approximation of freeform surfaces with spatial grids of bent lamellas which can be deployed from a planar configuration using a simple kinematic mechanism. Such elastic structures are easy-to-fabricate and easy-to-deploy and approximate shapes which combine physics and aesthetics. We propose a solution based on networks of geodesic curves on target surfaces and we introduce a set of conditions and assumptions which can be closely met in practice. Our formulation allows for a purely geometric approach which avoids the necessity of numerical shape optimization by building on top of theoretical insights from differential geometry. We propose a solution for the design, computation, and physical simulation of elastic geodesic grids, and present several fabricated small-scale examples with varying complexity. Moreover, we provide an empirical proof of our method by comparing the results to laser-scans of the fabricated models. Our method is intended as a form-finding tool for elastic gridshells in architecture and other creative disciplines and should give the designer an easy-to-handle way for the exploration of such structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.