Toll-like receptor (TLR) can activate dendritic cells (DC) through common signaling pathways requiring a cytoplasmic adapter, MyD88. However, the signaling is differentially regulated among TLR family members. TLR4 can activate MyD88-deficient bone marrow-derived DC (BMDC), and lead to induction of IFN-inducible genes and up-regulation of co-stimulatory molecules such as CD40, implying that the MyD88-independent signaling pathway functions downstream of TLR4. Because these effects can also be induced by type I IFN, we have analyzed whether type I IFN is involved in TLR4-induced responses. In response to lipopolysaccharide (LPS), IFN-beta gene expression was augmented in both wild-type and MyD88-deficient BMDC. Expression of all IFN-inducible genes except immune-responsive gene 1 (IRG1) was abolished and CD40 up-regulation was decreased in LPS-stimulated BMDC lacking either IFN-alpha/beta receptor (IFN-alpha/betaR) or signal transducer and activator of transcription 1 (STAT-1). Similar to the LPS response, TLR9 signaling can also induce expression of IFN-beta and IFN-inducible genes, and up-regulation of CD40. However, all these effects were MyD88 dependent. Thus, in TLR4 signaling, IFN-beta expression can be induced either by the MyD88-dependent or -independent pathway, whereas, in TLR9 signaling, it is dependent on MyD88. In CpG DNA-stimulated DC, expression of IFN-inducible genes except IRG1 was dependent on type I IFN signaling as in LPS-stimulated DC. However, in contrast to TLR4 signaling, TLR9 signaling requires type I IFN signaling for CD40 up-regulation. Taken together, this study demonstrates differential involvement of type I IFN in TLR4- and TLR9-induced effects on DC.
Apoptosis plays a critical role in maintaining tissue homeostasis and represents a normal function to eliminate excess or dysfunctional cells. Accumulated evidence suggests that apoptosis helps to maintain cellular homeostasis during the menstrual cycle by eliminating senescent cells from the functional layer of the uterine endometrium during the late secretory and menstrual phase of the cycle. The BCL-2 family and Fas/FasL system have been extensively studied in human endometrium and endometriotic tissues. Eutopic endometrium from women with endometriosis reportedly has some fundamental differences compared with normal endometrium of women without endometriosis. The differences could contribute to the survival of regurgitating endometrial cells into the peritoneal cavity and the development of endometriosis. One mechanism that recently gained a lot of interest is the finding that apoptosis appeared in eutopic and ectopic endometrium of patients with endometriosis. This study is a current review of the literature focused on the physiological role of apoptosis in normal endometrium and the alterations in regulation of apoptosis in eutopic and ectopic endometrium from women with endometriosis. Similarities in characteristics of endometriosis at a molecular level with gynaecological tumours are also discussed. Finally, the role of apoptosis in the treatment of endometriosis is reviewed to link the basic research findings into clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.