Essential oils of 25 indigenous populations of Dalmatian sage (Salvia officinalis L.) that represent nearly half of native distribution area of the species were analyzed. Plantlets collected from wild populations were grown in the same field under the same environmental conditions and then sampled for essential-oil analysis. The yield of essential oil ranged from 1.93 to 3.70% with average of 2.83%. Among the 62 compounds detected, eight (cis-thujone, camphor, trans-thujone, 1,8-cineole, β-pinene, camphene, borneol, and bornyl acetate) formed 78.13-87.33% of essential oils of individual populations. Strong positive correlations were observed between camphor and β-pinene, β-pinene and borneol, as well as between borneol and bornyl acetate. The strongest negative correlation was detected between camphor and trans-thujone. Principal component analysis (PCA) on the basis of eight main compounds showed that first main component separated populations with high thujone content, from those rich in camphor, while the second component separated populations rich in cis-thujone from those rich in trans-thujone. Cluster analysis (CA) led to the identification of three chemotypes of S. officinalis populations: cis-thujone; trans-tujone, and camphor/β-pinene/borneol/bornyl acetate. We propose that differences in essential oils of 25 populations are mostly genetically controlled, since potential environmental factors were controlled in this study.
The influence of inorganic nutrient concentrations on the ability of bacterioplankton to produce and degrade polysaccharidic transparent exopolymer particles (TEPs) and proteinaceous Coomassie-stained particles (CSPs) was investigated in an 11-day experiment. The dynamics of these particles were followed in prefiltered (1 microm) northern Adriatic seawater enclosures enriched either with 1 microM orthophosphate (main limiting nutrient in this area), 10 microM ammonium or both orthophosphate and ammonium. These enclosures were referenced to a nonenriched control. A high potential for bacterial TEP and CSP production was observed (10(4) - 10(5) L(-1) for particles larger than 4 microm). In conditions of high orthophosphate concentration (either orthophosphate enriched or both orthophosphate and ammonium enriched), lower abundances and surface areas of CSPs were obtained, whereas TEP dynamics were more affected by unbalanced enrichments where only orthophosphate or ammonium was added. The impact of unbalanced nutrient ratios on TEPs was indicated by their higher abundance but low capacity for Alcian blue absorption, implying a change in their structure. Inorganic nutrient availability was thus proven to affect the bacterial potential for producing and degrading bacterially derived TEPs and CSPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.