A remarkable rise in intraocular pressure occurs during hemodialysis in eyes with an impaired aqueous outflow, when serum osmolality decreases rapidly.
We reported the high effectiveness of electrolyzed strong acid aqueous solution (ESAAS) in cleaning hemodialysis lines. Although ESAAS has a strong bactericidal action, one concern is its strong acidity. It has a pH of 2.3-2.7, more than 1,000 mV in oxidation-reduction potential (ORP), and 10-50 ppm of available chlorine. The possibility of metal corrosion, degradation of synthetic resins, chorine gas emission, or dissolving calcium carbonate (CaCO3) deposits due to ESAAS's acidity was tested using in vitro experiments. The bactericidal and antiviral effects of various ESAAS's were also tested. Metal corrosion and synthetic resin degradation, although they occurred, were not serious. There were no problems with chlorine gas emission and dissolving of CaCO3 deposits. Each type of ESAAS showed almost the same bactericidal and antiviral effect, but in some cases differences were observed.
Recently, the use of electrolyzed solutions has attracted considerable interest in Japan. This study investigates the efficiency of electrolyzed solutions as disinfecting agents (DA) in the reuse of dialyzers and compares their efficiency to that of other disinfectants currently in use. The following 3 methods were employed. First, the rinsing time and rebound release of reused dialyzers were measured and compared after electrolyzed solutions, electrolyzed strong acid aqueous solution (ESAAS) and electrolyzed strong basic aqueous solution (ESBAS), made from reverse osmosis (RO) water (ESAAS, ESBAS; Generating apparatuses: Super Oxseed alpha 1000, Amano Corporation, Yokohama, Japan), 2% Dialox-cj (Teijin Gambro Medical, Tokyo, Japan), and 3.8% formalin were used as DAs. This involved performing dialysis with 2 types of dialyzers: a cellulose acetate membrane (CAM) dialyzer and a polysulfone membrane (PSM) dialyzer. The dialyzers were cleaned and disinfected using the different DA and left for 48 h. Next, after performing dialysis the dialyzer membranes were cleaned with a saline solution (0.9% NaCl) and RO water and then cleaned with the various DA. These membranes were observed using a scanning electron microscope (SEM) to check for the presence of physical and biological contaminants. Finally, in vitro tests were performed to determine the level of dialyzer clearance when PSM dialyzers were reused after having been cleaned and disinfected with the electrolyzed solutions. The rinsing time results for both the CAM and PSM dialyzers showed the electrolyzed solutions (ESBAS and ESAAS) as being undetectable within 10 min. With regard to the rebound release, for both the CAM and PSM dialyzers, the electrolyzed solutions were undetectable at all checking times between 30 and 240 min. Observation by SEM showed that cleaning with both ESAAS and ESBAS left the fewest contaminants, and cleaning with 2% Dialox-cj left the highest level of contaminants in the CAM dialyzers. With regard to experiments concerning use in vitro, no major changes in the dialyzer clearance were noticed after 6 uses. In every experiment, the previous investigations showed the electrolyzed solutions to be superior to 3. 8% formalin and 2% Dialox-cj DA for the reuse of dialyzers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.