Although many studies have shown that hyperbaric oxygen (HBO) therapy can significantly improve symptoms and quality of life of patients affected by femoral head necrosis, this therapy is not worldwide approved yet. This meta-analysis was performed to evaluate its clinical effect. Relevant studies published before May 2020 were systematically searched using terms related to HBO and femoral head necrosis. Fixed and random-effects models were used to estimate the odds ratio (OR) with 95% confidence intervals (CI). Subgroup analyses and publication bias tests were carried out to explore potential study heterogeneity and bias. Ten studies involving 353 controls and 368 HBO-treated cases were included, most of which were conducted on Asian population. The clinical effect in the HBO therapy group was 3.84 times higher than in the control group (OR = 3.84, 95% CI (2.10, 7.02), p < 0.00001). Subgroup analyses showed that the clinical effect of HBO therapy was statistically significant in the Asian subpopulation which represented most of the subjects (OR = 3.53, 95% CI (1.87, 6.64), p < 0.00001), but not in the non-Asian subpopulation, probably because of insufficient numerosity (OR = 7.41, 95% CI (0.73, 75.71), p = 0.09). The results of this meta-analysis suggest that patients with femoral head necrosis treated with HBO therapy can achieve a significant clinical improvement.
Exercise generates reactive oxygen species (ROS), creating a redox imbalance towards oxidation when inadequately intense. Normobaric and hyperbaric oxygen (HBO) breathed while not exercising induces antioxidant enzymes expression, but literature is still poor. Twenty-two athletes were assigned to five groups: controls; 30%, or 50% O2; 100% O2 (HBO) at 1.5 or 2.5 atmosphere absolute (ATA). Twenty treatments were administered on non-training days. Biological samples were collected at T0 (baseline), T1 (end of treatments), and T2 (1 month after) to assess ROS, antioxidant capacity (TAC), lipid peroxidation, redox (amino-thiols) and inflammatory (IL-6, 10, TNF-α) status, renal function (i.e., neopterin), miRNA, and hemoglobin. At T1, O2 mixtures and HBO induced an increase of ROS, lipid peroxidation and decreased TAC, counterbalanced at T2. Furthermore, 50% O2 and HBO treatments determined a reduced state in T2. Neopterin concentration increased at T1 breathing 50% O2 and HBO at 2.5 ATA. The results suggest that 50% O2 treatment determined a reduced state in T2; HBO at 1.5 and 2.5 ATA similarly induced protective mechanisms against ROS, despite the latter could expose the body to higher ROS levels and neopterin concentrations. HBO resulted in increased Hb levels and contributed to immunomodulation by regulating interleukin and miRNA expression.
Purpose Divers can experience cognitive impairment due to inert gas narcosis (IGN) at depth. Brain-derived neurotrophic factor (BDNF) rules neuronal connectivity/metabolism to maintain cognitive function and protect tissues against oxidative stress (OxS). Dopamine and glutamate enhance BDNF bioavailability. Thus, we hypothesized that lower circulating BDNF levels (via lessened dopamine and/or glutamate release) underpin IGN in divers, while testing if BDNF loss is associated with increased OxS. Methods To mimic IGN, we administered a deep narcosis test via a dry dive test (DDT) at 48 msw in a multiplace hyperbaric chamber to six well-trained divers. We collected: (1) saliva samples before DDT (T0), 25 msw (descending, T1), 48 msw (depth, T2), 25 msw (ascending, T3), 10 min after decompression (T4) to dopamine and/or reactive oxygen species (ROS) levels; (2) blood and urine samples at T0 and T4 for OxS too. We administered cognitive tests at T0, T2, and re-evaluated the divers at T4. Results At 48 msw, all subjects experienced IGN, as revealed by the cognitive test failure. Dopamine and total antioxidant capacity (TAC) reached a nadir at T2 when ROS emission was maximal. At decompression (T4), a marked drop of BDNF/glutamate content was evidenced, coinciding with a persisting decline in dopamine and cognitive capacity. Conclusions Divers encounter IGN at – 48 msw, exhibiting a marked loss in circulating dopamine levels, likely accounting for BDNF-dependent impairment of mental capacity and heightened OxS. The decline in dopamine and BDNF appears to persist at decompression; thus, boosting dopamine/BDNF signaling via pharmacological or other intervention types might attenuate IGN in deep dives.
Competitive Offshore Ocean Sailing is a highly demanding activity in which subjects are exposed to psychophysical stressors for a long time. To better define the physiological adaptations, we investigated the stress response of subjects exposed to 3-days long ocean navigation with disruption of circadian rhythms. 6 male subjects were involved in the study and provided urine and saliva samples before setting sail, during a single day of inshore sailing, during 3-days long ocean navigation, and at the arrival, to measure oxidative stress, cortisol, nitric oxide metabolites (NOx) and metabolic response. Motion Sickness questionnaires were also administered during the navigation. The crew suffered a mean weight loss of 1.58 kg. After the long navigation, a significant increase in ROS production and decrease in total antioxidant capacity and uric acid levels were observed. Lipid peroxidation, NO metabolites, ketones, creatinine, and neopterin levels were also increased. Furthermore, a significant increase in cortisol levels was measured. Finally, we found a correlation between motion sickness questionnaires with the increase of NOx, and no correlation with cortisol levels. Physical and psychological stress response derived from offshore sailing resulted in increased oxidative stress, nitric oxide metabolites, and cortisol levels, unbalanced redox status, transient renal function impairment, and ketosis. A direct correlation between motion sickness symptoms evaluated through questionnaires and NOx levels was also found.
Background Although kidney transplantation improves patient survival and quality of life, long-term results are hampered by both immune- and non-immune-mediated complications. Current biomarkers of post-transplant complications, such as allograft rejection, chronic renal allograft dysfunction, and cutaneous squamous cell carcinoma, have a suboptimal predictive value. DNA methylation is an epigenetic modification that directly affects gene expression and plays an important role in processes such as ischemia/reperfusion injury, fibrosis, and alloreactive immune response. Novel techniques can quickly assess the DNA methylation status of multiple loci in different cell types, allowing a deep and interesting study of cells’ activity and function. Therefore, DNA methylation has the potential to become an important biomarker for prediction and monitoring in kidney transplantation. Purpose of the study The aim of this study was to evaluate the role of DNA methylation as a potential biomarker of graft survival and complications development in kidney transplantation. Material and Methods A systematic review of several databases has been conducted. The Newcastle–Ottawa scale and the Jadad scale have been used to assess the risk of bias for observational and randomized studies, respectively. Results Twenty articles reporting on DNA methylation as a biomarker for kidney transplantation were included, all using DNA methylation for prediction and monitoring. DNA methylation pattern alterations in cells isolated from different tissues, such as kidney biopsies, urine, and blood, have been associated with ischemia–reperfusion injury and chronic renal allograft dysfunction. These alterations occurred in different and specific loci. DNA methylation status has also proved to be important for immune response modulation, having a crucial role in regulatory T cell definition and activity. Research also focused on a better understanding of the role of this epigenetic modification assessment for regulatory T cells isolation and expansion for future tolerance induction-oriented therapies. Conclusions Studies included in this review are heterogeneous in study design, biological samples, and outcome. More coordinated investigations are needed to affirm DNA methylation as a clinically relevant biomarker important for prevention, monitoring, and intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.