We present a novel soft exoskeleton providing active support for hand closing and opening. The main novelty is a different tendon routing, folded laterally on both sides of the hand, and adding clenching forces when the exoskeleton is activated. It improves the stability of the glove, diminishing slippage and detachment of tendons from the hand palm toward the grasping workspace. The clenching effect is released when the hand is relaxed, thus enhancing the user's comfort. The alternative routing allowed embedding a single actuator on the hand dorsum, resulting more compact with no remote cable transmission. Enhanced adaptation to the hand is introduced by the modular design of the soft polymer open rings. FEM simulations were performed to understand the interaction between soft modules and fingers. Different experiments assessed the desired effect of the proposed routing in terms of stability and deformation of the glove, evaluated the inter-finger compliance for non-cylindrical grasping, and characterized the output grasping force. Experiments with subjects explored the grasping performance of the soft exoskeleton with different hand sizes. A preliminary evaluation with Spinal Cord Injury patients was useful to highlight the strengths and limitations of the device when applied to the target scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.