We investigate a type of bistability occurring in population systems where noise not only causes transitions between stable states, but also constructs the states themselves. We focus on the experimentally well-studied system of ants choosing between two food sources to illustrate the essential points, but the ideas are more general. The mean time for switching between the two bistable states of the system is calculated. This suggests a procedure for estimating, in a real system, the critical population size above which bistability ceases to occur.
Mutualisms between species play an important role in ecosystem function and stability. However, in some environments, the competitive aspects of an interaction may dominate the mutualistic aspects. Although these transitions could have far-reaching implications, it has been difficult to study the causes and consequences of this mutualistic–competitive transition in experimentally tractable systems. Here, we study a microbial cross-feeding mutualism in which each yeast strain supplies an essential amino acid for its partner strain. We find that, depending upon the amount of freely available amino acid in the environment, this pair of strains can exhibit an obligatory mutualism, facultative mutualism, competition, parasitism, competitive exclusion, or failed mutualism leading to extinction of the population. A simple model capturing the essential features of this interaction explains how resource availability modulates the interaction and predicts that changes in the dynamics of the mutualism in deteriorating environments can provide advance warning that collapse of the mutualism is imminent. We confirm this prediction experimentally by showing that, in the high nutrient competitive regime, the strains rapidly reach a common carrying capacity before slowly reaching the equilibrium ratio between the strains. However, in the low nutrient regime, before collapse of the obligate mutualism, we find that the ratio rapidly reaches its equilibrium and it is the total abundance that is slow to reach equilibrium. Our results provide a general framework for how mutualisms may transition between qualitatively different regimes of interaction in response to changes in nutrient availability in the environment.
A stochastic version of the Brusselator model is proposed and studied via the system size expansion. The mean-field equations are derived and shown to yield to organized Turing patterns within a specific parameters region. When determining the Turing condition for instability, we pay particular attention to the role of cross-diffusive terms, often neglected in the heuristic derivation of reaction-diffusion schemes. Stochastic fluctuations are shown to give rise to spatially ordered solutions, sharing the same quantitative characteristic of the mean-field based Turing scenario, in term of excited wavelengths. Interestingly, the region of parameter yielding to the stochastic self-organization is wider than that determined via the conventional Turing approach, suggesting that the condition for spatial order to appear can be less stringent than customarily believed.
We review the mathematical formalism underlying the modelling of stochasticity in biological systems. Beginning with a description of the system in terms of its basic constituents, we derive the mesoscopic equations governing the dynamics which generalise the more familiar macroscopic equations. We apply this formalism to the analysis of two specific noiseinduced phenomena observed in biologically-inspired models. In the first example, we show how the stochastic amplification of a Turing instability gives rise to spatial and temporal patterns which may be understood within the linear noise approximation. The second example concerns the spontaneous emergence of cell polarity, where we make analytic progress by exploiting a separation of time-scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.