We theoretically describe the dynamics of swimmer populations in rigidly confined thin liquid films. We first demonstrate that hydrodynamic interactions between confined swimmers depend solely on their shape and are independent of their specific swimming mechanism. We also show that, due to friction with the nearby rigid walls, confined swimmers do not just reorient in flow gradients but also in uniform flows. We then quantify the consequences of these microscopic interaction rules on the large-scale hydrodynamics of isotropic populations. We investigate in detail their stability and the resulting phase behavior, highlighting the differences with conventional active, three-dimensional suspensions. Two classes of polar swimmers are distinguished depending on their geometrical polarity. The first class gives rise to coherent directed motion at all scales, whereas for the second class we predict the spontaneous formation of coherent clusters (swarms).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.