We propose a standard time-of-flight experiment as a method for observing the anyonic statistics of quasiholes in a fractional quantum Hall state of ultracold atoms. The quasihole states can be stably prepared by pinning the quasiholes with localized potentials and a measurement of the mean square radius of the freely expanding cloud, which is related to the average total angular momentum of the initial state, offers direct signatures of the statistical phase. Our proposed method is validated by Monte Carlo calculations for ν=1/2 and 1/3 fractional quantum Hall liquids containing a realistic number of particles. Extensions to quantum Hall liquids of light and to non-Abelian anyons are briefly discussed.
We study the repulsive polaron problem in a two-component two-dimensional system of fermionic atoms. We use two different interaction models: a short-range (hard-disk) potential and a dipolar potential. In our approach, all the atoms have the same mass and we consider the system to be composed of a uniform bath of a single species and a single atomic impurity. We use the diffusion Monte Carlo method to evaluate polaron properties such as its chemical potential and pair distribution functions, together with a discussion on the deficit of volume induced by the impurity. We also evaluate observables that allow us to determine the validity of the quasi-particle picture: the quasi-particle residue and the effective mass of the polaron. Employing two different potentials allows us to identify the universality regime, where the properties depend only on the gas parameter na 2 s fixed by the bath density and the two-dimensional scattering length.
We present a method to characterize non-Abelian anyons that is based only on static measurements and that does not rely on any form of interference. For geometries where the anyonic statistics can be revealed by rigid rotations of the anyons, we link this property to the angular momentum of the initial state. We test our method on the paradigmatic example of the Moore-Read state, that is known to support excitations with non-Abelian statistics of Ising type. As an example, we reveal the presence of different fusion channels for two such excitations, a defining feature of non-Abelian anyons. This is obtained by measuring density-profile properties, like the mean square radius of the system or the depletion generated by the anyons. Our study paves the way to novel methods for characterizing non-Abelian anyons, both in the experimental and theoretical domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.