Robots for minimally invasive surgery introduce many advantages, but still require the surgeon to alternatively control the surgical instruments and the endoscope. This work aims at providing autonomous navigation of the endoscope during a surgical procedure. The autonomous endoscope motion was based on kinematic tracking of the surgical instruments and integrated with the da Vinci Research Kit. A preclinical usability study was conducted by 10 urologists. They carried out an ex vivo orthotopic neobladder reconstruction twice, using both traditional and autonomous endoscope control. The usability of the system was tested by asking participants to fill standard system usability scales. Moreover, the effectiveness of the method was assessed by analyzing the total procedure time and the time spent with the instruments out of the field of view. The average system usability score overcame the threshold usually identified as the limit to assess good usability (average score = 73.25 > 68). The average total procedure time with the autonomous endoscope navigation was comparable with the classic control (p = 0.85 > 0.05), yet it significantly reduced the time out of the field of view (p = 0.022 < 0.05). Based on our findings, the autonomous endoscope improves the usability of the surgical system, and it has the potential to be an additional and customizable tool for the surgeon that can always take control of the endoscope or leave it to move autonomously.
Purpose A fundamental problem in designing safe machine learning systems is identifying when samples presented to a deployed model differ from those observed at training time. Detecting so-called out-of-distribution (OoD) samples is crucial in safety-critical applications such as robotically guided retinal microsurgery, where distances between the instrument and the retina are derived from sequences of 1D images that are acquired by an instrument-integrated optical coherence tomography (iiOCT) probe. Methods This work investigates the feasibility of using an OoD detector to identify when images from the iiOCT probe are inappropriate for subsequent machine learning-based distance estimation. We show how a simple OoD detector based on the Mahalanobis distance can successfully reject corrupted samples coming from real-world ex vivo porcine eyes. Results Our results demonstrate that the proposed approach can successfully detect OoD samples and help maintain the performance of the downstream task within reasonable levels. MahaAD outperformed a supervised approach trained on the same kind of corruptions and achieved the best performance in detecting OoD cases from a collection of iiOCT samples with real-world corruptions. Conclusion The results indicate that detecting corrupted iiOCT data through OoD detection is feasible and does not need prior knowledge of possible corruptions. Consequently, MahaAD could aid in ensuring patient safety during robotically guided microsurgery by preventing deployed prediction models from estimating distances that put the patient at risk.
Purpose Advanced developments in the medical field have gradually increased the public demand for surgical skill evaluation. However, this assessment always depends on the direct observation of experienced surgeons, which is time-consuming and variable. The introduction of robot-assisted surgery provides a new possibility for this evaluation paradigm. This paper aims at evaluating surgeon performance automatically with novel evaluation metrics based on different surgical data. Methods Urologists ($$n=10$$ n = 10 ) from a hospital were requested to perform a simplified neobladder reconstruction on an ex vivo setup twice with different camera modalities ($$n=2$$ n = 2 ) randomly. They were divided into novices and experts ($$n=5$$ n = 5 , respectively) according to their experience in robot-assisted surgeries. Different performance metrics ($$n=2$$ n = 2 ) are proposed to achieve the surgical skill evaluation, considering both instruments and endoscope. Also, nonparametric tests are adopted to check if there are significant differences when evaluating surgeons performance. Results When grouping according to four stages of neobladder reconstruction, statistically significant differences can be appreciated in phase 1 ($$p=0.0284$$ p = 0.0284 ) and phase 2 ($$p=0.01953$$ p = 0.01953 ) with normalized time-related metrics and camera movement-related metrics, respectively. On the other hand, considering experience grouping shows that both metrics are able to highlight statistically significant differences between novice and expert performances in the control protocol. It also shows that the camera-related performance of experts is significantly different ($$p=0.003153$$ p = 0.003153 ) when handling the endoscope manually and when it is automatic. Conclusion Surgical skill evaluation, using the approach in this paper, can effectively measure surgical procedures of surgeons with different experience. Preliminary results demonstrate that different surgical data can be fully utilized to improve the reliability of surgical evaluation. It also demonstrates its versatility and potential in the quantitative assessment of various surgical operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.