Of the existing theoretical formulas for the h-index, those recently suggested by Burrell (J Informetr 7:774–783, 2013b) and by Bertoli-Barsotti and Lando (J Informetr 9(4):762–776, 2015) have proved very effective in estimating the actual value of the h-index Hirsch (Proc Natl Acad Sci USA 102:16569–16572, 2005), at least at the level of the individual scientist. These approaches lead (or may lead) to two slightly different formulas, being based, respectively, on a “standard” and a “shifted” version of the geometric distribution. In this paper, we review the genesis of these two formulas—which we shall call the “basic” and “improved” Lambert-W formula for the h-index—and compare their effectiveness with that of a number of instances taken from the well-known Glänzel–Schubert class of models for the h-index (based, instead, on a Paretian model) by means of an empirical study. All the formulas considered in the comparison are “ready-to-use”, i.e., functions of simple citation indicators such as: the total number of publications; the total number of citations; the total number of cited paper; the number of citations of the most cited paper. The empirical study is based on citation data obtained from two different sets of journals belonging to two different scientific fields: more specifically, 231 journals from the area of “Statistics and Mathematical Methods” and 100 journals from the area of “Economics, Econometrics and Finance”, totaling almost 100,000 and 20,000 publications, respectively. The citation data refer to different publication/citation time windows, different types of “citable” documents, and alternative approaches to the analysis of the citation process (“prospective” and “retrospective”). We conclude that, especially in its improved version, the Lambert-W formula for the h-index provides a quite robust and effective ready-to-use rule that should be preferred to other known formulas if one’s goal is (simply) to derive a reliable estimate of the h-index.
As is known, the h-index, h, is an exact function of the citation pattern. At the same time, and more generally, it is recognized that h is “loosely” related to the values of some basic statistics, such as the number of publications and the number of citations. In the present study we introduce a formula that expresses the h-index as an almost-exact function of some (four) basic statistics. On the basis of an empirical study—in which we consider citation data obtained from two different lists of journals from two quite different scientific fields—we provide evidence that our ready-to-use formula is able to predict the h-index very accurately (at least for practical purposes). For comparative reasons, alternative estimators of the h-index have been considered and their performance evaluated by drawing on the same dataset. We conclude that, in addition to its own interest, as an effective proxy representation of the h-index, the formula introduced may provide new insights into “factors” determining the value of the h-index, and how they interact with each other.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.