Photoactive organic semiconductor substrates are envisioned as a novel class of bioelectronic devices that transduce light into stimulating biological signals with relevance for retinal implants or guided cellular differentiation. The direct interface between the semiconductor and the electrolyte gives rise to different competing optoelectronic transduction mechanisms. A detailed understanding of such faradaic or capacitive processes and the underlying material science is necessary to develop and optimize future devices. Here, the problem in organic photoelectrodes is addressed based on a planar p‐n junction containing phthalocyanine (H2Pc) and N,N′‐dimethyl perylenetetracarboxylic diimide (PTCDI). The detailed characterization of photoelectrochemical current transients is combined with spectroscopic measurements, impedance spectroscopy, and local photovoltage measurements to establish a model that predicts quantitatively faradaic or capacitive current transients. The decisive elements of the model are the energy levels present at the interface and the voltage building up in the photoelectrode. The result of the efforts is a comprehensive model of photocapacitive and photofaradaic effects that can be applied to developing wireless bioelectronic photostimulation devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.