The vision behind the Web of Data is to extend the current document-oriented Web with machine-readable facts and structured data, thus creating a representation of general knowledge. However, most of the Web of Data is limited to being a large compendium of encyclopedic knowledge describing entities. A huge challenge, the timely and massive extraction of RDF facts from unstructured data, has remained open so far. The availability of such knowledge on the Web of Data would provide significant benefits to manifold applications including news retrieval, sentiment analysis and business intelligence. In this paper, we address the problem of the actuality of the Web of Data by presenting an approach that allows extracting RDF triples from unstructured data streams. We employ statistical methods in combination with deduplication, disambiguation and unsupervised as well as supervised machine learning techniques to create a knowledge base that reflects the content of the input streams. We evaluate a sample of the RDF we generate against a large corpus of news streams and show that we achieve a precision of more than 85%.
Over the last years, a considerable amount of structured data has been published on the Web as Linked Open Data (LOD). Despite recent advances, consuming and using Linked Open Data within an organization is still a substantial challenge. Many of the LOD datasets are quite large and despite progress in Resource Description Framework (RDF) data management their loading and querying within a triple store is extremely time-consuming and resource-demanding. To overcome this consumption obstacle, we propose a process inspired by the classical Extract-Transform-Load (ETL) paradigm. In this article, we focus particularly on the selection and extraction steps of this process. We devise a fragment of SPARQL Protocol and RDF Query Language (SPARQL) dubbed SliceSPARQL, which enables the selection of well-defined slices of datasets fulfilling typical information needs. SliceSPARQL supports graph patterns for which each connected subgraph pattern involves a maximum of one variable or Internationalized resource identifier (IRI) in its join conditions. This restriction guarantees the efficient processing of the query against a sequential dataset dump stream. Furthermore, we evaluate our slicing approach on three different optimization strategies. Results show that dataset slices can be generated an order of magnitude faster than by using the conventional approach of loading the whole dataset into a triple store.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.