Extremely irradiated hot Jupiters, exoplanets reaching dayside temperatures >2000 K, stretch our understanding of planetary atmospheres and the models we use to interpret observations. While these objects are planets in every other sense, their atmospheres reach temperatures at low pressures comparable only to stellar atmospheres. In order to understand our a priori theoretical expectations for the nature of these objects, we self-consistently model a number of extreme hot Jupiter scenarios with the PHOENIX model atmosphere code. PHOENIX is well-tested on objects from cool brown dwarfs to expanding supernovae shells and its expansive opacity database from the UV to far-IR make PHOENIX well-suited for understanding extremely irradiated hot Jupiters. We find several fundamental differences between hot Jupiters at temperatures >2500 K and their cooler counterparts. First, absorption by atomic metals like Fe and Mg, molecules including SiO and metal hydrides, and continuous opacity sources like H − all combined with the short-wavelength output of early-type host stars result in strong thermal inversions, without the need for TiO or VO. Second, many molecular species, including H 2 O, TiO, and VO are thermally dissociated at pressures probed by eclipse observations, biasing retrieval algorithms that assume uniform vertical abundances. We discuss other interesting properties of these objects, as well as future prospects and predictions for observing and characterizing this unique class of astrophysical object, including the first self-consistent model of the hottest known jovian planet, KELT-9b.
The detections of atomic hydrogen, heavy atoms and ions surrounding the extrasolar giant planet (EGP) HD209458b constrain the composition, temperature and density profiles in its upper atmosphere. Thus the observations provide guidance for models that have so far predicted a range of possible conditions. We present the first hydrodynamic escape model for the upper atmosphere that includes all of the detected species in order to explain their presence at high altitudes, and to further constrain the temperature and velocity profiles. This model calculates the stellar heating rates based on recent estimates of photoelectron heating efficiencies, and includes the photochemistry of heavy atoms and ions in addition to hydrogen and helium.The composition at the lower boundary of the escape model is constrained * Corresponding author. Faxby a full photochemical model of the lower atmosphere. We confirm that molecules dissociate near the 1 µbar level, and find that complex molecular chemistry does not need to be included above this level. We also confirm that diffusive separation of the detected species does not occur because the heavy atoms and ions collide frequently with the rapidly escaping H and H + . This means that the abundance of the heavy atoms and ions in the thermosphere simply depends on the elemental abundances and ionization rates. We show that, as expected, H and O remain mostly neutral up to at least 3 R p , whereas both C and Si are mostly ionized at significantly lower altitudes. We also explore the temperature and velocity profiles, and find that the outflow speed and the temperature gradients depend strongly on the assumed heating efficiencies. Our models predict an upper limit of 8,000 K for the mean (pressure averaged) temperature below 3 R p , with a typical value of 7,000 K based on the average solar XUV flux at 0.047 AU. We use these temperature limits and the observations to evaluate the role of stellar energy in heating the upper atmosphere.
Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet's birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25-7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and welldefined planet sample within its 4-year mission lifetime. Transit, eclipse and phasecurve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10-100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H 2 O, CO 2 , CH 4 NH 3 , HCN, H 2 S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performedusing conservative estimates of mission performance and a
We use a model of aerosol microphysics to investigate the impact of high-altitude photochemical aerosols on the transmission spectra and atmospheric properties of close-in exoplanets, such as HD 209458 b and HD 189733 b. The results depend strongly on the temperature profiles in the middle and upper atmospheres, which are poorly understood. Nevertheless, our model of HD 189733 b, based on the most recently inferred temperature profiles, produces an aerosol distribution that matches the observed transmission spectrum. We argue that the hotter temperature of HD 209458 b inhibits the production of high-altitude aerosols and leads to the appearance of a clearer atmosphere than on HD 189733 b. The aerosol distribution also depends on the particle composition, photochemical production, and atmospheric mixing. Due to degeneracies among these inputs, current data cannot constrain the aerosol properties in detail. Instead, our work highlights the role of different factors in controlling the aerosol distribution that will prove useful in understanding different observations, including those from future missions. For the atmospheric mixing efficiency suggested by general circulation models, we find that the aerosol particles are small (∼nm) and probably spherical. We further conclude that a composition based on complex hydrocarbons (soots) is the most likely candidate to survive the high temperatures in hot-Jupiter atmospheres. Such particles would have a significant impact on the energy balance of HD 189733 b's atmosphere and should be incorporated in future studies of atmospheric structure. We also evaluate the contribution of external sources to photochemical aerosol formation and find that their spectral signature is not consistent with observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.