SummaryActin filaments assemble into a variety of networks to provide force for diverse cellular processes [1]. Tropomyosins are coiled-coil dimers that form head-to-tail polymers along actin filaments and regulate interactions of other proteins, including actin-depolymerizing factor (ADF)/cofilins and myosins, with actin [2, 3, 4, 5]. In mammals, >40 tropomyosin isoforms can be generated through alternative splicing from four tropomyosin genes. Different isoforms display non-redundant functions and partially non-overlapping localization patterns, for example within the stress fiber network [6, 7]. Based on cell biological studies, it was thus proposed that tropomyosin isoforms may specify the functional properties of different actin filament populations [2]. To test this hypothesis, we analyzed the properties of actin filaments decorated by stress-fiber-associated tropomyosins (Tpm1.6, Tpm1.7, Tpm2.1, Tpm3.1, Tpm3.2, and Tpm4.2). These proteins bound F-actin with high affinity and competed with α-actinin for actin filament binding. Importantly, total internal reflection fluorescence (TIRF) microscopy of fluorescently tagged proteins revealed that most tropomyosin isoforms cannot co-polymerize with each other on actin filaments. These isoforms also bind actin with different dynamics, which correlate with their effects on actin-binding proteins. The long isoforms Tpm1.6 and Tpm1.7 displayed stable interactions with actin filaments and protected filaments from ADF/cofilin-mediated disassembly, but did not activate non-muscle myosin IIa (NMIIa). In contrast, the short isoforms Tpm3.1, Tpm3.2, and Tpm4.2 displayed rapid dynamics on actin filaments and stimulated the ATPase activity of NMIIa, but did not efficiently protect filaments from ADF/cofilin. Together, these data provide experimental evidence that tropomyosin isoforms segregate to different actin filaments and specify functional properties of distinct actin filament populations.
The ability of cells to generate forces through actin filament turnover was an early adaptation in evolution. While much is known about how actin filaments grow, mechanisms of their disassembly are incompletely understood. The best-characterized actin disassembly factors are the cofilin family proteins, which increase cytoskeletal dynamics by severing actin filaments. However, the mechanism by which severed actin filaments are recycled back to monomeric form has remained enigmatic. We report that cyclase-associated-protein (CAP) works in synergy with cofilin to accelerate actin filament depolymerization by nearly 100-fold. Structural work uncovers the molecular mechanism by which CAP interacts with actin filament pointed end to destabilize the interface between terminal actin subunits, and subsequently recycles the newly-depolymerized actin monomer for the next round of filament assembly. These findings establish CAP as a molecular machine promoting rapid actin filament depolymerization and monomer recycling, and explain why CAP is critical for actin-dependent processes in all eukaryotes.
Actin polymerization powers key cellular processes, including motility, morphogenesis, and endocytosis. The actin turnover cycle depends critically on “re-charging” of ADP-actin monomers with ATP, but whether this reaction requires dedicated proteins in cells, and the underlying mechanism, have remained elusive. Here we report that nucleotide exchange catalyzed by the ubiquitous cytoskeletal regulator cyclase-associated protein (CAP) is critical for actin-based processes in vivo. We determine the structure of the CAP–actin complex, which reveals that nucleotide exchange occurs in a compact, sandwich-like complex formed between the dimeric actin-binding domain of CAP and two ADP-actin monomers. In the crystal structure, the C-terminal tail of CAP associates with the nucleotide-sensing region of actin, and this interaction is required for rapid re-charging of actin by both yeast and mammalian CAPs. These data uncover the conserved structural basis and biological role of protein-catalyzed re-charging of actin monomers.
Coordinated polymerization of actin filaments provides force for cell migration, morphogenesis, and endocytosis. Capping Protein (CP) is central regulator of actin dynamics in all eukaryotes. It binds actin filament (F-actin) barbed ends with high affinity and slow dissociation kinetics to prevent filament polymerization and depolymerization. In cells, however, CP displays remarkably rapid dynamics within F-actin networks, but the underlying mechanism has remained enigmatic. We report that a conserved cytoskeletal regulator, twinfilin, is responsible for CP's rapid dynamics and specific localization in cells. Depletion of twinfilin led to stable association of CP with cellular F-actin arrays and its treadmilling throughout leading-edge lamellipodium. These were accompanied by diminished F-actin disassembly rates. In vitro single filament imaging approaches revealed that twinfilin directly promotes dissociation of CP from filament barbed ends, while allowing subsequent filament depolymerization. These results uncover an evolutionary conserved bipartite mechanism that controls how actin cytoskeleton-mediated forces are generated in cells. Coordinated polymerization of actin filaments (F-actin) generatespushing force, which drives the protrusion of lamellipodia at the leading edge of migrating cells, and contributes to the formation of plasma membrane invaginations in endocytic processes [1][2][3][4] . A large array of actin-binding proteins regulates the dynamics and organization of actin filaments in these processes, but only few (<10) of them are conserved in evolution from protozoan parasites to animals 5 . Among these 'core' actin-binding proteins are the heterodimeric Capping Protein (CP) and twinfilin.Generation of membrane protrusions requires that a subset of actin filament barbed ends is capped to funnel the assemblycompetent actin monomers to a limited number of growing barbed ends [6][7][8] . CP is the most prominent actin filament barbed end capping protein in most organisms and cell types 9,10 . It is an essential component of in vitro reconstituted actin-based motility system 11 and actin-based processes in cells [12][13][14] . Moreover, its inhibition in animal non-muscle cells disturbs actin-based lamellipodial morphology, protrusion and cell migration [15][16][17][18] . In addition, CP plays an important role in controlling the length and the density of branches within actin filament networks nucleated by the Arp2/3 complex 19 .The activities of CP are controlled by several proteins 9,10 . V-1/ myotrophin binds and sequesters CP with nanomolar affinity and inhibits its capping activity [20][21][22][23] . Moreover, the capping protein interaction (CPI)-motif containing proteins, such as CARMILs (capping protein, Arp2/3 and myosin-I linker protein) 24 , interact with CP to reduce its affinity to both actin filament barbed ends [25][26][27] and to V-1 22 through an allosteric mechanism 25,28 . Depletion of CARMILs and other CPI motif containing proteins disrupts the subcellular localization of CP [29]...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.