Despite the common view that conditions in winter strongly influence survival and population size of fish, the ecology of salmonids has not been as extensively studied in winter as in other seasons. In this paper, we review the latest studies on salmonid winter survival, habitat use, movement and biotic interactions as they relate to the prevailing physical and habitat conditions in rivers and streams. The majority of research conducted on the winter ecology of salmonids has been carried out in small rivers and streams, where temperatures are above zero and where there is no ice. Investigations in large rivers, regulated and dredged rivers, and under conditions of different ice formations are almost totally lacking, presumably related to sampling difficulties with these systems. The studies-at-hand indicate that a multitude of physical and biological factors affect the survival, behavior, and habitat use of salmonids in winter. The general concept that winter functions as a critical period for the survival of young salmonids is not well supported by the literature. Instead, overwinter survival of juvenile fish appears to be context-dependent, related to specific habitat characteristics and ice regimes of streams. In general, over wintering salmonids prefer sheltered, low velocity microhabitats, are mainly nocturnal, and interact relatively little with conspecifics or interspecifics. Specific descriptions of microhabitat preferences of salmonids are difficult to make due to highly disparate results from the literature. We suggest that future research should be directed towards (1) being able to predict the dynamics of freezing and ice processes at different scales, especially at the local scale, (2) studying fish behavior, habitat use and preference under partial and full ice cover, (3) evaluating the impacts of man-induced environmental modifications (e. g. flow regulation, land-use activities) on the ecology of salmonids in winter, and (4) identifying methods to model and assess winter habitat conditions for salmonids.
Summer water temperatures are rising in many river systems in North America, and this warming trend is projected to intensify in the coming decades. Cold-water fish may alleviate thermal stress in summer by aggregating in discrete cold-water plumes that provide thermal refuge from high ambient river temperatures. Reliance on cold-water thermal refugia is expected to increase in a warming climate, and many river reaches already lack suitable thermal refugia as a result of an absence of thermal diversity. A comprehensive fish management strategy could proactively address this imminent threat to cold-water fish populations across North America by preserving existing thermal refugia, augmenting thermal anomalies to improve performance as refugia, and creating new thermal refugia in uniformly warm river reaches. We provide practical recommendations on how these measures can be accomplished based on insight derived from recent research focused on the Miramichi River, New Brunswick. Opportunities include limiting land use change, construction aggregate extraction (e.g. sand and gravel pits), and groundwater pumping/consumption. Existing thermal anomalies can be enhanced by controlling advective thermal mixing between cold-water tributaries and the river mainstem flow, installing riparian shading, and adding temporary structures for protection from avian predators. New refugia can be created by temporarily pumping groundwater to discrete points within the river during periods of thermal stress. These concepts are discussed in the context of a comprehensive thermal refugia management strategy. Copyright
Anthropogenic influences, including climate change, are increasing river temperatures in northern and temperate regions and threatening the thermal habitats of native salmonids. When river temperatures exceed the tolerance levels of brook trout and Atlantic salmon, individuals exhibit behavioural thermoregulation by seeking out cold‐water refugia – often created by tributaries and groundwater discharge. Thermal infrared (TIR) imagery was used to map cold‐water anomalies along a 53 km reach of the Cains River, New Brunswick. Trout and salmon parr did not use all identified thermal anomalies as refugia during higher river temperature periods (>21°C). Most small‐bodied trout (8–30 cm) were observed in 80% of the thermal anomalies sampled. Large‐bodied trout (>35 cm) required a more specific set of physical habitat conditions for suitable refugia, that is, 100% of observed large trout used 30% of the anomalies sampled and required water depths >65 cm within or adjacent to the anomaly. Densities of trout were significantly higher within anomalies compared with areas of ambient river temperature. Salmon parr were less aligned with thermal anomalies at the observed temperatures, that is, 59% were found in 65% of the sampled anomalies; and densities were not significantly different within/ outside anomalies. Salmon parr appeared to aggregate at 27°C, and after several events over 27°C variability in aggregation behaviour was observed – some fish aggregated at 25°C, others did not. We stipulate this is due to variances of thermal fatigue. Habitat suitability curves were developed for velocity, temperature, depth, substrate, and deep water availability to characterize conditions preferred by fish during high‐temperature events. These findings are useful for managers as our climate warms, and can potentially be used as a tool to help conserve and enhance thermal refugia for brook trout and Atlantic salmon in similar systems.
River temperatures often surpass the thermal limits of juvenile Atlantic salmon (Salmo salar). Using thermal monitoring data to replicate a natural heat event, we investigated how cooler nighttime temperatures would affect how juvenile salmon cope with several days of heat cycling.
Climate change is expected to increase the frequency and magnitude of extreme thermal events in rivers. The Little Southwest Miramichi River (LSWM) and the Ouelle River (OR) are two Atlantic salmon (Salmo salar) rivers located in eastern Canada, where in recent years, water temperatures have exceeded known thermal limits (~23°C). Once temperature surpasses this threshold, juvenile salmon exploit thermal heterogeneity to behaviourally thermoregulate, forming aggregations in coolwater refuges. This study aimed to determine whether the behavioural thermoregulation response is universal across rivers, arising from common thermal cues. We detailed the temperature and discharge patterns of two geographically distinct rivers from 2010 to 2012 and compared these with aggregation onset temperature. PIT telemetry and snorkelling were used to confirm the presence of aggregations. Mean daily maximum temperature in 2010 was significantly greater in the OR versus the LSWM (p = 0.005), but not in other years (p = 0.090–0.353). Aggregations occurred on 14 and 9 occasions in the OR and LSWM respectively. Temperature at onset of aggregation was significantly greater in the OR (Tonset = 28.3°C) than in the LSWM (Tonset = 27.3°C; p = 0.049). Logistic regression models varied by river and were able to predict the probability of aggregation based on the preceding number of hours >23°C (R2 = 0.61 & 0.65; P50 = 27.4°C & 28.9°C; in the OR and LSWM respectively). These results imply the preceding local thermal regime may influence behaviour and indicate a degree of phenotypic plasticity, illustrating a need for localised management strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.