We investigated the metabolism of human brown adipose tissue (BAT) in healthy subjects by determining its cold-induced and insulin-stimulated glucose uptake and blood flow (perfusion) using positron emission tomography (PET) combined with computed tomography (CT). Second, we assessed gene expression in human BAT and white adipose tissue (WAT). Glucose uptake was induced 12-fold in BAT by cold, accompanied by doubling of perfusion. We found a positive association between whole-body energy expenditure and BAT perfusion. Insulin enhanced glucose uptake 5-fold in BAT independently of its perfusion, while the effect on WAT was weaker. The gene expression level of insulin-sensitive glucose transporter GLUT4 was also higher in BAT as compared to WAT. In conclusion, BAT appears to be differently activated by insulin and cold; in response to insulin, BAT displays high glucose uptake without increased perfusion, but when activated by cold, it dissipates energy in a perfusion-dependent manner.
Objective: Inactive brown adipose tissue (BAT) may predispose to weight gain. This study was designed to measure metabolism in the BAT of obese humans, and to compare it to that in lean subjects. The impact of weight loss on BAT and the association of detectable BAT with various metabolic characteristics were also assessed. Design and Methods: Using positron emission tomography (PET), cold-and insulin-stimulated glucose uptake and blood flow in the BAT of obese and lean humans were quantified. Further, cold-induced glucose uptake was measured in obese subjects before and after a 5-month conventional weight loss. Results: Mean responses in BAT glucose uptake rate to both cold and insulin stimulation were twice as large in lean as in obese subjects. Blood flow in BAT was also lower in obese subjects under cold conditions. The increase in cold-induced BAT glucose uptake rate after weight loss was not statistically significant. Subjects with cold-activated detectable BAT were leaner and had higher whole-body insulin sensitivity than BAT-negative subjects, irrespective of age and gender. Conclusions: The effects of cold and insulin on BAT activity are severely blunted in obesity, and the presence of detectable BAT may contribute to a metabolically healthy status.
We used near-infrared spectroscopy (NIRS) to study responses to speech and music on the auditory cortices of 13 healthy full-term newborn infants during natural sleep. The purpose of the study was to investigate the lateralization of speech and music responses at this stage of development. NIRS data was recorded from eight positions on both hemispheres simultaneously with electroencephalography, electrooculography, electrocardiography, pulse oximetry, and inclinometry. In 11 subjects, statistically significant (P < 0.02) oxygenated (HbO2) and total hemoglobin (HbT) responses were recorded. Both stimulus types elicited significant HbO2 and HbT responses on both hemispheres in five subjects. Six of the 11 subjects had positive HbO2 and HbT responses to both stimulus types, whereas one subject had negative responses. Mixed positive and negative responses were observed in four neonates. On both hemispheres, speech and music responses were significantly correlated (r = 0.64; P = 0.018 on the left hemisphere (LH) and r = 0.60; P = 0.029 on the right hemisphere (RH)). On the group level, the average response to the speech stimuli was statistically significantly greater than zero in the LH, whereas responses on the RH or to the music stimuli did not differ significantly from zero. This suggests a more coherent response to speech on the LH. However, significant differences in lateralization of the responses or mean response amplitudes of the two stimulus types were not observed on the group level.
Hyperthyroidism increases GU in BAT independently of BAT perfusion. Hyperthyroid patients are characterized by increased skeletal muscle metabolism and lipid oxidation rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.