The mu- (MOR) and kappa- (KOR) opioid receptors have been implicated in the regulation of homeostasis of non-neuronal cells, such as keratinocytes, and sensations like pain and chronic pruritus. Therefore, we have studied the phenotype of skin after deletion of MOR and KOR. In addition, we applied a dry skin model in these knockout mice and compared the different mice before and after induction of the dermatitis in terms of epidermal thickness, epidermal peripheral nerve ending distribution, dermal inflammatory infiltrate (mast cells, CD4 positive lymphocytes), and scratching behavior. MOR knockout mice reveal as phenotype a significantly thinner epidermis and a higher density of epidermal fiber staining by protein gene product 9.5 than the wild-type counterparts. Epidermal hypertrophy, induced by the dry skin dermatitis, was significantly less developed in MOR knockout than in wild-type mice. Neither mast cells nor CD4 T(h)-lymphocytes are involved in the changes of epidermal nerve endings and epidermal homeostasis. Finally, behavior experiments revealed that MOR and KOR knockout mice scratch less after induction of dry skin dermatitis than wild-type mice. These results indicate that MOR and KOR are important in skin homeostasis, epidermal nerve fiber regulation, and pathophysiology of itching.
Three novel glycine-rich peptides, named ctenidin 1-3, with activity against the Gram-negative bacterium E. coli, were isolated and characterized from hemocytes of the spider Cupiennius salei. Ctenidins have a high glycine content (>70%), similarly to other glycine-rich peptides, the acanthoscurrins, from another spider, Acanthoscurria gomesiana. A combination of mass spectrometry, Edman degradation, and cDNA cloning revealed the presence of three isoforms of ctenidin, at least two of them originating from simple, intronless genes. The full-length sequences of the ctenidins consist of a 19 amino acid residues signal peptide followed by the mature peptides of 109, 119, or 120 amino acid residues. The mature peptides are post-translationally modified by the cleavage of one or two C-terminal cationic amino acid residue(s) and amidation of the newly created mature C-terminus. Tissue expression analysis revealed that ctenidins are constitutively expressed in hemocytes and to a small extent also in the subesophageal nerve mass.
Toothpastes have a complex formulation and their different chemical and physical factors will influence their effectiveness against erosive tooth wear (ETW). We, therefore, investigated the effect of different desensitizing and/or anti-erosive toothpastes on initial enamel erosion and abrasion, and analysed how the interplay of their chemical and physical factors influences ETW. Human enamel specimens were submitted to 5 erosion-abrasion cycles using 9 different toothpastes and an artificial saliva group, and enamel surface loss (SL) was calculated. Chemical and physical factors (pH; presence of tin; calcium, phosphate and fluoride concentrations; % weight of solid particles; wettability; and particle size) of the toothpaste slurries were then analysed and associated with the amount of SL in a multivariate model. We observed that all desensitizing and/or anti-erosive toothpastes presented different degrees of SL. Besides pH and fluoride, all other chemical and physical factors were associated with SL. The results of this experiment indicate that enamel SL occurs independent of whether the toothpastes have a desensitizing or anti-erosive claim, and that lower SL is associated with the presence of tin, higher concentration of calcium and phosphate, higher % weight of solid particles, smaller particle size, and lower wettability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.