Autonomous mobile robots need to adapt their behavior to the terrain over which they drive, and to predict the traversability of the terrain so that they can effectively plan their paths. Such robots usually make use of a set of sensors to investigate the terrain around them and build up an internal representation that enables them to navigate. This paper addresses the question of how to use sensor data to learn properties of the environment and use this knowledge to predict which regions of the environment are traversable. The approach makes use of sensed information from range sensors (stereo or ladar), color cameras, and the vehicle's navigation sensors. Models of terrain regions are learned from subsets of pixels that are selected by projection into a local occupancy grid. The models include color and texture as well as traversability information obtained from an analysis of the range data associated with the pixels. The models are learned without supervision, deriving their properties from the geometry and the appearance of the scene.The models are used to classify color images and assign traversability costs to regions. The classification does not use the range or position information, but only color images. Traversability determined during the model-building phase is stored in the models. This enables classification of regions beyond the range of stereo or ladar using the information in the color images. The paper describes how the models are constructed and maintained, how they are used to classify image regions, and how the system adapts to changing environments. Examples are shown from the implementation of this algorithm in the DARPA Learning Applied to Ground Robots (LAGR) program, and an evaluation of the algorithm against human-provided ground truth is presented.
As part of the Army's Demo III project, a sensor-based system has been developed to identify roads and to enable a mobile robot to drive along them. A ladar sensor, which produces range images, and a color camera are used in conjunction to locate the road surface and its boundaries. Sensing is used to constantly update an internal world model of the road surface. The world model is used to predict the future position of the road and to focus the attention of the sensors on the relevant regions in their respective images. The world model also determines the most suitable algorithm for locating and tracking road features in the images based on the current task and sensing information. The planner uses information from the world model to determine the best path for the vehicle along the road. Several different algorithms have been developed and tested on a diverse set of road sequences. The road types include some paved roads with lanes, but most of the sequences are of unpaved roads, including dirt and gravel roads. The algorithms compute various features of the road images including smoothness in the world model map and in the range domain, and color features and texture in the color domain. Performance in road detection and tracking are described and examples are shown of the system in action.
The Army Research Laboratory (ARL) Robotics Collaborative Technology Alliance (CTA) conducted an assessment and evaluation of multiple algorithms for real-time detection of pedestrians in Laser Detection and Ranging (LADAR) and video sensor data taken from a moving platform. The algorithms were developed by Robotics CTA members and then assessed in field experiments jointly conducted by the National Institute of Standards and Technology (NIST) and ARL. A robust, accurate and independent pedestrian tracking system was developed to provide ground truth. The ground truth was used to evaluate the CTA member algorithms for uncertainty and error in their results. A real-time display system was used to provide early detection of errors in data collection.
We describe a project to collect and disseminate sensor data for autonomous mobility research. Our goals are to provide data of known accuracy and precision to researchers and developers to enable algorithms to be developed using realistically difficult sensory data. This enables quantitative comparisons of algorithms by running them on the same data, allows groups that lack equipment to participate in mobility research, and speeds technology transfer by providing industry with metrics for comparing algorithm performance. Data are collected using the NIST High Mobility Multi-purpose Wheeled Vehicle (HMMWV), an instrumented vehicle that can be driven manually or autonomously both on roads and off. The vehicle can mount multiple sensors and provides highly accurate position and orientation information as data are collected. The sensors on the HMMWV include an imaging ladar, a color camera, color stereo, and inertial navigation (INS) and Global Positioning System (GPS). Also available are a highresolution scanning ladar, a line-scan ladar, and a multicamera panoramic sensor. The sensors are characterized by collecting data from calibrated courses containing known objects. For some of the data, ground truth will be collected from site surveys. Access to the data is through a web-based query interface. Additional information stored with the sensor data includes navigation and timing data, sensor to vehicle coordinate transformations for each sensor, and sensor calibration information. Several sets of data have already been collected and the web query interface has been developed. Data collection is an ongoing process, and where appropriate, NIST will work with other groups to collect data for specific applications using third-party sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.