When repelling particles are confined by a transverse potential in quasi-one-dimensional geometry, the straight line equilibrium configuration becomes unstable at small confinement, in favor of a staggered row that may be inhomogeneous or homogeneous. This conformational phase transition is a pitchfork bifurcation called the zigzag transition. We study the zigzag transition in infinite and periodic finite systems with short-range interactions. We provide numerical evidence that in this case the bifurcation is subcritical since it exhibits phase coexistence and hysteretic behavior. The physical mechanism responsible for the change in the bifurcation character is the nonlinear coupling between the transverse soft mode at the transition and the longitudinal Goldstone mode linked to the translational or rotational invariance of the zigzag pattern. An asymptotic analysis, near the bifurcation threshold and assuming an infinite system, gives an explicit expression for the normal form of the bifurcation. We establish the subcriticality, and we describe with excellent precision the inhomogeneous zigzag patterns observed in the simulations. A direct test of the physical mechanism responsible for the bifurcation character evidences a quantitative agreement.
The transition from Tayor vortex flow to wavy-vortex flow is revisited. The Self-Sustaining Process (SSP) of Waleffe [Phys. Fluids 9, 883-900 (1997)] proposes that a key ingredient in transition to turbulence in wall-bounded shear flows is a three-step process involving rolls advecting streamwise velocity, leading to streaks which become unstable to a wavy perturbation whose nonlinear interaction with itself feeds the rolls. We investigate this process in Taylor-Couette flow. The instability of Taylor-vortex flow to wavy-vortex flow, a process which is the inspiration for the second phase of the SSP, is shown to be caused by the streaks, with the rolls playing a negligible role, as predicted by Jones [J. Fluid Mech. 157, 135-162 (1985)] and demonstrated by Martinand et al. [Phys. Fluids 26, 094102 (2014)]. In the third phase of the SSP, the nonlinear interaction of the waves with themselves reinforces the rolls. We show this both quantitatively and qualitatively, identifying physical regions in which this reinforcement is strongest, and also demonstrate that this nonlinear interaction depletes the streaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.