Despite extensive use of arginine-rich cell-penetrating peptides (CPPs)-including octaarginine (R8)-as intracellular delivery vectors, mechanisms for their internalization are still under debate. Lipid packing in live cell membranes was characterized using a polarity-sensitive dye (di-4-ANEPPDHQ), and evaluated in terms of generalized polarization. Treatment with membrane curvature-inducing peptides led to significant loosening of the lipid packing, resulting in an enhanced R8 penetration. Pyrenebutyrate (PyB) is known to facilitate R8 membrane translocation by working as a hydrophobic counteranion. Interestingly, PyB also actively induced membrane curvature and perturbed lipid packing. R8 is known to directly cross cell membranes at elevated concentrations. The sites of R8 influx were found to have looser lipid packing than surrounding areas. Lipid packing loosening is proposed as a key factor that governs the membrane translocation of CPPs.
Arginine-rich cell-penetrating peptides, including octaarginine (R8) and HIV-1 TAT peptides, have the ability to translocate through cell membranes and transport exogenous bioactive molecules into cells. Hydrophobic counteranions such as pyrenebutyrate (PyB) have been reported to markedly promote the membrane translocation of these peptides. In this study, using model membranes having liquid-ordered (Lo) and liquid-disordered (Ld) phases, we explored the effects of PyB on the promotion of R8 translocation. Confocal microscopic observations of giant unilamellar vesicles (GUVs) showed that PyB significantly accelerated the accumulation of R8 on membranes containing negatively charged lipids, leading to the internalization of R8 without collapse of the GUV structures. PyB displayed an alternative activity, increasing the fluidity of the negatively charged membranes, which diminished the distinct Lo/Ld phase separation on GUVs. This was supported by the decrease in fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH). Additionally, PyB induced membrane curvature, which has been suggested as a possible mechanism of membrane translocation for R8. Taken together, our results indicate that PyB may have multiple effects that promote R8 translocation through cell membranes.
Epsin-1 is a representative protein for inducing the positive curvature necessary for the formation of clathrin-coated pits. Here we demonstrate that the N-terminus 18-residue peptide of epsin-1 (EpN18) has this ability per se, as proved by differential scanning calorimetry (DSC) and solid-state NMR. Moreover, it is shown how this positive curvature promotion can be exploited for promoting the direct penetration of a representative cell-penetrating peptide (CPP), octaarginine (R8), through artificial and plasma membranes. This synergistic effect has been used for the efficient delivery of a proapoptotic domain peptide (PAD), which induced high level of apoptosis only when coadministered with R8 and EpN18, thus emphasizing the importance of positive curvature induction for achieving the desired ultimate cargo bioavailability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.