Filamin A (ABP-280), which is an actin-binding protein of 560 kDa as a dimer, can, together with actin filaments, produce an isotropic cross-linked three-dimensional network (actin/filamin A gel) that plays an important role in mechanical responses of cells in processes such as maintenance of membrane stability and translational locomotion. In this study, we investigated the mechanical properties of single filamin A molecules using atomic force microscopy. In force^extension curves, we observed sawtooth patterns corresponding to the unfolding of individual immunoglobulin (Ig)-fold domains of filamin A. At a pulling speed of 0.37 W Wm/s, the unfolding interval was sharply distributed around 30 nm, while the unfolding force ranged from 50 to 220 pN. This wide distribution of the unfolding force can be explained by variation in values of activation energy and the width of activation barrier of 24 Ig-fold domains of the filamin A at the unfolding transition. This unfolding can endow filamin A with great extensibility. The refolding of the unfolded chain of filamin A occurred when the force applied to the protein was reduced to near zero, indicating that its unfolding is reversible. Based on these results, we discuss here the physiological implications of the mechanical properties of single filamin A molecules. ß 2001 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.
A number of positively charged polypeptides and proteins bundle DNA, F-actin, microtubules, and viruses such as filamentous phage fd and tobacco mosaic virus (TMV), as well as intermediate filaments formed by vimentin. The general behavior is dictated by the common polyelectrolyte nature of these biopolymers, which gives rise to nonspecific binding by ligands carrying several net opposite charges. An attractive interaction accounts for the subsequent lateral aggregation, distinguishing this transition from the liquid crystalline formation of filamentous particles at high concentrations. Morphologically similar filament bundles can also be induced by inert solutes such as polyethylene glycol (PEG) and proteins that do not bind the macromolecular filaments, but the physicochemistry underlying this class of bundle transitions is distinct. In particular, bundling transitions induced by electrostatic and steric mechanisms have an opposite dependence on the solution ionic strength and the concentration of the filamentous biopolymers. The distinct mechanisms illustrated in this report may each contribute to the formation of specific polymer bundles under physiological conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.