Performance of optical asynchronous code-division multiple-access (CDMA) systems with double optical hardlimiters is analyzed under the assumption of Poisson shot noise model for the receiver photodetector where the noise due to the detector dark currents exists. Optical orthogonal codes (OOC's) are employed as signature sequence codes. In the analysis, chips are assumed to be synchronous among users, that is, the chip synchronous case, because the effect of the interference is largest in the chip synchronous case and thus the performance in the chip synchronous case results in the upper bounds on the performance of the asynchronous system. The performance is evaluated under average power and bit rate constraints. The results show that, differing from the optical synchronous CDMA systems with double optical hard-limiters, the optical asynchronous CDMA systems with double optical hard-limiters have good performance even when the number of simultaneous users is large.Index Terms-Channel interference, double optical hardlimiters, optical asynchronous CDMA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.